Dilution cryostat

The liquid helium is transferred from the 2000 l dewar on the target platform to gas-liquid separator (2). The cold gas coming from the separator is used to cool 80 K and 4 K thermal screens (9). From the bottom part of the separator (2) liquid helium is taken through the needle valves NV1 to fill the 4He evaporator (3) and NV4 to cool the microwave cavity (7). NV5 is connected to the top of the separator and is used for precooling of the 4He evaporator (3). Typical operation temperature of the 4He evaporator (3) is 1.3 K. The cavity (7) is around 3 K.

The dilution cryostat is filled with mixture of 3He/4He. The 3He evaporator or still (4) is typically at 0.6 K. Below 0.87 K the mixture separates into 4He rich and 3He rich phase. In the mixing chamber (6) when the 3He atoms are moved from the 3He rich phase to 4He rich phase energy is removed from the system. This dilution cooling allows to achieve target material temperatures below 50 mK.

The price of helium-3He gas in CERN magazine (SCEM 60.26.30.320.8) August 2007 is 404 CHF/l. The 4He gas with purity 46 (SCEM 60.26.30.310.0) is 15.7 CHF/m3.

Fig. 1. Dilution cryostat flow diagram from Ref. [Doshita 2004]. (1) liquid helium buffer dewar, (2) gas/liquid phase separator, (3) evaporator, (4) still or 3He evaporator, (5) main heat exchanger, (6) mixing chamber, (7) microwave cavity, (8) magnet liquid helium vessel, (9) thermal screens, (10) 3He roots blowers, (11) 4He roots and rotary pumps, (12) helium recovery line. The white arrows indicate the flow of 4He gas and black arrows the flow of 3He gas.

See also DilCryoPres, PolTargTemp, PolTargSlow, PolTargPump, PolTargHolder and PolTargDiluFlow.
Links

http://wwwcompass.cern.ch/compass/detector/target/welcome.html

http://na47sun05.cern.ch/target/outline/dilref.html

http://ltl.tkk.fi/ltresearch.html

http://en.wikipedia.org/wiki/Liquid_helium

http://www.uoregon.edu/~rjd/vapor1.htm

References

J.G.M. Kuerten et. al., *Thermodynamic properties of liquid 3He-4He mixtures at zero pressure for temperatures below 250 mK and 3He concentrations below 8%*, Cryogenics **25** (1985) 419.

-- JaakkoKoivuniemi - 15 Jun 2007