
Table of Contents
Under construction..1

 Preliminary Consideration...1
 Offload vs Native mode..1
 NFS Support for Xeon Phi..1
 Histograms and ntuples...2
 Visualization..2

 Building Geant4 toolkit for Xeon Phi..2
 Important note on compatibility..2
 Configuration...3
 Compilation...4
 Advanced: compiling Xerces-C for Xeon Phi...4

 Building an application for Xeon Phi..4
 Configuration...4
 Compilation and installation...4

 Running on Xeon Phi...4

i

Under construction

In this page we describe our experience with running Geant4 applications on Intel Xeon Phi systems. This
page provides instructions to compile Geant4 toolkit and applications to be run on MIC architectures.

Preliminary Consideration

Intel Xeon Phi (aka MIC) is a co-processor designed to benefit parallel applications thanks to its large
hardware thread count and wide registers. While not all applications may benefit from this kind of
architecture, Geant4 toolkit can be compiled for Xeon Phi architectures and applications can be run on the
co-processor. In its current implementation its form factor is a PCI express card that is added to a Intel Xeon
host. Differently from other accelerators (e.g. GPGPUs) the MIC has an embedded linux and it can be
addressed as an additional node in the system (i.e. it is possible to ssh to the card).

To use a Xeon Phi coprocessor you need access to a machine with at least one Xeon Phi available and the
intel C/C++ compilers (icpc). Currently only Intel compiler can cross-compile software for MIC
architectures.

In the following we assume you have access to a Xeon Phi and you can login into it. For a general
introduction to Xeon Phi, installation guides, code examples, and best practices we suggest the book Parallel
Programming and Optimization with Intel Xeon Phi Coprocessors by Colfax International.

Offload vs Native mode

Xeon Phi provide two modes of operation: native and offload. In the former an application is (cross) compiled
and executed on the coprocessor. For example it is possible to install the application on the card, ssh to it and
start the application. In the latter the application source code is instrumented with a set of directives and
function calls that, similarly to what happens to GPGPUs, instruct the compiler to produce binary code that
will be downloaded and executed on the card.

For Geant4 applications we prefer the use of native mode for a set of reasons:

No code modification is needed, the code that runs on the host can be, in the majority of the cases,
recompiled and run on the MIC without modifications.

1.

The offload mode implies some overhead due to the necessity of copying, during a Geant4 simulation,
the data to the card and copying back the results. This overhead can be large compared to the actual
processing on the card, only an application-specific code instrumentation can be done and no general
recipe can be suggested.

2.

Xeon Phi supports Intel MPI parallelization framework. Geant4 supports, since several years, MPI to
perform process-level parallelization. In version 10.0 MPI and MT can co-work. Thus ranks can be
started on the host and on the Xeon Phi to collaboratively perform a simulation. Given the small
communication between ranks needed during the event loop the overhead in this case is minimal. The
suggested way to run in this way is to start a single rank on the card and use multi-threading to
achieve a further level of parallelization.

3.

NFS Support for Xeon Phi

A Geant4 application needs access to some support files. For example all applications need access to data files
(Geant4 DataBases) that contain, for example, electromagnetic data or neutron cross-sections. In addition
other support files may be needed for specific applications: input generator files, macros files. Finally almost
all applications produce at least one output file (at minimum the cout/cerr log).

Under construction 1

http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.colfax-intl.com/nd/xeonphi/book.aspx
http://www.colfax-intl.com/nd/xeonphi/book.aspx

It is thus necessary to provide a simple mechanism to provide to the Xeon Phi coprocessor the input files and
a way to retrieve the output produced by a native application. Luckily Xeon Phi supports NFS filesystems. It
is strongly suggested to configure the system to export one or more directories from the host to the MIC. This
NFS area should at least contain the Geant4 DataBases and should contain an area where results can be
written.

Histograms and ntuples

Often results from a Geant4 application are collected in the form of histograms and ntuples. A package very
popular in high-energy-physics is ROOT . As any other software to be used on Xeon Phi it si required that
this is recompiled for MIC architectures. At the time of writing this we have not yet had experience managing
to cross-compile the entire ROOT system for Xeon Phi. While some success have been done recompiling the
minimum required to write ROOT files, the process is not simple.

However, starting with Geant4 version 10.0, we provide native histograms and ntuple support in Geant4 that
is compatible with ROOT and supports Xeon Phi. Using g4analysis module you will be able to create
output files on the MIC containing histograms and simple ntuples in a variety of output formats (ROOT,
AIDA-XML, ASCII-CSV). Clearly not all ROOT features are supported and you should refer to the Geant4
examples on how to use g4analysis (an important note: if you use this method histograms from threads are
automatically merged in a single output file).

Visualization

For Geant4 application all (interactive) visualization support with the exception of defaults, should be turned
off (e.g. no Qt or other advanced drivers). However drivers that produce a file output and do not have external
dependencies (HepRep, VRML, ASCIITree) should be supported (not tested yet).

Building Geant4 toolkit for Xeon Phi

The process of compiling Geant4 toolkit is the same as for the host, with the difference that the -mmic
compilation flag should be added and icpc should be used as compiler. CMake is used to configure the
compilation of Geant4 and the process is carried out on the host.

In the following we assume that:

The directory /geant4-sw/data is NFS exported to the Xeon Phi and already contains Geant4
databases

1.

To simplify the handling of the binaries a static installation is suggested. Only .a libraries are built.2.
A bash family shell will be used as an example.3.
Intel tools (compilers, libraries) are installed in the default location under /opt/intel. If this is not
the case, you will need to modify this path in all the following instructions.

4.

Important note on compatibility

We have compiled and tested Geant4 with Intel Compiler (icc / icpc) version 16 and MPSS (Intel Manycore
Platform Support Stack) version 3.4. Please note that due to a bug in icc Geant4 does not compile with the
latest MPSS version 3.6.

 Please note that to compile latest versions of C++ you need compatibility layer of icc being setup with
gcc 4.9.x, note the code will not compile if you have compatibility layer older or never than that. To see
your icc compatibility layer type:

iccp -v

 XeonPhiSupport < Geant4 < TWiki

NFS Support for Xeon Phi 2

http://root.cern.ch
https://software.intel.com/en-us/forums/intel-c-compiler/topic/593648

. The output should match:

icpc version 16.0.1 (gcc version 4.9.3 compatibility)

gcc version must match 4.9.x

See: Geant4 hypernews

 Preliminary tests seem to indicate that the most recent MPSS version 3.6.1 has solved the problems
reported with 3.6 and the bug has been solved

Configuration

CMake supports cross-compilation if you provide a toolchain file. The purpose of this file is to instruct
cmake where the utilities needed to cross-compile are located and to setup the environment.

The content of the toolchain file we use:

this one is important
SET(CMAKE_SYSTEM_NAME Linux)
#this one not so much
SET(CMAKE_SYSTEM_VERSION 1)

specify the cross compiler
SET(CMAKE_C_COMPILER icc)
SET(CMAKE_CXX_COMPILER icpc)
where is the target environment
SET(CMAKE_FIND_ROOT_PATH /opt/intel/composerxe)

search for programs in the build host directories
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
for libraries and headers in the target directories
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

Copy and adapt the above lines in a text file (e.g. mic-toolchain-file.cmake).

Before proceeding to configure Geant4 with cmake you must setup the environment as follows:

$ export CC=icc
$ export CXX=icpc
$ export LD=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-ld
$ export AR=/usr/linux-k1om-4.7/bin/x86_64-k1om-linux-ar
$ export LDFLAGS=-mmic
$ export CXXFLAGS=-mmic
$ export CFLAGS=-mmic

Note: you may need to specify another archiver/linker (e.g. xiar) if you want to use some advanced
compilation options (e.g. -ipo). However the ones in the example are good for general purpose configuration.

You can now proceed with the Geant4 configuration in a build directory:

cmake -DGEANT4_BUILD_MULTITHREADED=ON \
 -DGEANT4_USE_SYSTEM_EXPAT=OFF \
 -DGEANT4_INSTALL_DATA=OFF -DGEANT4_INSTALL_DATADIR=/geant4-sw/data \
 -DCMAKE_C_COMPILER=${CC} -DCMAKE_CXX_COMPILER=${CXX} -DCMAKE_LINKER=${LD} -DCMAKE_AR=${AR} \
 -DCMAKE_TOOLCHAIN_FILE=<path-to-toolchain-file>/mic-toolchain-file.cmake \
 -DBUILD_SHARED_LIBS=OFF -DBUILD_STATIC_LIBS=ON \
 [... other G4 configuration options ...] \
 <path-to-g4-source>

 XeonPhiSupport < Geant4 < TWiki

Important note on compatibility 3

http://hypernews.slac.stanford.edu/HyperNews/geant4/get/Multithreading/81.html

If you need GDML support read the advanced section on Xerces-C.

Compilation

You can now proceed with compilation:

[g]make [... options ...]

Advanced: compiling Xerces-C for Xeon Phi

If your application requires the use of GDML to read/import geometry you need an additional step to cross
compile Xerces-C libraries and activate GDML support in Geant4.

Perform the setup of environment variables as previously described. Then compile Xerces-C to be used on
the MIC:

$ cd <xercescdir>
$ export CXXFLAGS="$CXXFLAGS -w -O2 -DNDEBUG"
$ export CFLAGS="$CFLAGS -w -O2 -DNDEBUG"
$./configure --prefix=<some-inst-area-for-xercesc> --host=x86_64-intel-linux CC=icc CXX=icpc --disable-shared --disable-netaccessor-curl
$ [g]make [...]
$ [g]make install

You can now configure and compile Geant4 as described in the previous section, adding the following cmake
options: -DGEANT4_USE_GDML=ON -DXERCESC_INCLUDE_DIR=<some-inst-area-for-xercesc>/include
-DXERCESC_LIBRARY=<some-inst-area-for-xercesc>/lib/libxerces-c.a

Building an application for Xeon Phi

Once Geant4 toolkit as been compiled you can configure, build and install the application.

Configuration

Setup the environment as described when compiling Geant4. Create a build directory for the application and
then configure it with cmake:

cmake -DCMAKE_LINKER=${LD} -DCMAKE_AR=${AR} \
 -DCMAKE_TOOLCHAIN_FILE=<path-to-toolchain-file>/mic-toolchain-file.cmake \
 -DGeant4_DIR=<g4-build-directory-from-previous-step> \
 [... other application specific options] \
 <path-to-application-source>

Compilation and installation

You can now compile the application with [g]make [...]. To install the application, copy the executable and
needed support files, in the NFS area visible from the Xeon Phi.

Running on Xeon Phi

To run the application you can:

$ ssh mic0
$ #You may want to put the following in a setup.sh script
$ basepath=<where-G4-databases-are>
$ export G4LEVELGAMMADATA=${basepath}/PhotonEvaporation

 XeonPhiSupport < Geant4 < TWiki

Configuration 4

https://twiki.cern.ch/twiki/bin/edit/Geant4/AdvancedXerces?topicparent=Geant4.XeonPhiSupport;nowysiwyg=1
https://twiki.cern.ch/twiki/bin/edit/Geant4/SetupEnvironment?topicparent=Geant4.XeonPhiSupport;nowysiwyg=1

$ export G4NEUTRONXSDATA=${basepath}/G4NEUTRONXS
$ export G4LEDATA=${basepath}/G4EMLOW
$ export G4NEUTRONHPDATA=${basepath}/G4NDL
$ export G4RADIOACTIVEDATA=${basepath}/RadioactiveDecay
$ export G4ABLADATA=${basepath}/G4ABLA
$ export G4PIIDATA=${basepath}/G4PII
$ export G4SAIDXSDATA=${basepath}/G4SAIDDATA
$ export G4REALSURFACEDATA=${basepath}/RealSurface
$
$ export LD_LIBRARY_PATH=/opt/intel/lib/mic:$LD_LIBRARY_PATH
$ cd <where-executable-is>
$ export G4FORCENUMBEROFTHREADS=max #or maximum number given the memory budget
$ [.... launch application as normal ...]

Note that LD_LIBRARY_PATH should contain the path where the following three libraries are installed:
libimf.so, libsvml.so, libirng.so. For example /opt/intel/lib/mic can be itself an NFS exported path from
the host.

An alternative way to run an application without an explicit ssh is the use of the micnativeloadex
application. From the host, you can run an application on the first mic card as follows from the build
directory.

$ export SINK_LD_LIBRARY_PATH=/opt/intel/lib/mic
$ micnativeloadex <Application-Name> -e "<remote-environment, for example DB databases>" -a "<application arguments>" -d 0

Note: that in this case you should pass via the -e argument all Geant4 DataBases environments variables.
With this method there is no need to explicitly copy the application in a NFS area. Note however that the
application will be run on the card as a special user (micuser) in a temporary directory, thus if your application
need some input files in the working directory this method will not work. Also it has been reported that with
this method you should not use all available threads, but leave a core free (needed for host/card
communication), to avoid degradation of performances. This is useful for fast test or if the only output of the
application is to cout/cerr (that appears back on the host console).

-- AndreaDotti - 14 Oct 2014

This topic: Geant4 > XeonPhiSupport
Topic revision: r5 - 2016-09-02 - AndreaDotti

Copyright &© 2008-2020 by the contributing authors. All material on this
collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

 XeonPhiSupport < Geant4 < TWiki

Running on Xeon Phi 5

https://twiki.cern.ch/twiki/bin/view/Main/AndreaDotti
http://twiki.org/
http://www.perl.org/
https://cern.service-now.com/service-portal/search.do?q=twiki

	Table of Contents
	Under construction
	 Preliminary Consideration
	 Offload vs Native mode
	 NFS Support for Xeon Phi
	 Histograms and ntuples
	 Visualization

	 Building Geant4 toolkit for Xeon Phi
	 Important note on compatibility
	 Configuration
	 Compilation
	 Advanced: compiling Xerces-C for Xeon Phi

	 Building an application for Xeon Phi
	 Configuration
	 Compilation and installation

	 Running on Xeon Phi

