Table of Contents

Cooling...1
 Common primary chiller...1
 VELO/UT CO2 cooling (MAUVE)..1
 Cooling plants..1
 Transfer lines...1
 Junction box..2
 Local boxes..2
 Infrastructure...2
 Safety...3
 Cleaning...3
 SciFi SiPMs..3
 Novec fluid...3
 Transfer lines..3
 Manifolds...4
 Baby demo..4
 Vacuum system...4
 Dry gas system...4
 RICH...4
 SciFi and UT electronics..4
 UT service bays (mixed water)..5
 VELO OPBs..5
 Dry gas..5
 Drier..5
 SXL8..5
 UX85..6
 Oil residue measurements..6
 Nitrogen..6
 Infrastructure..6
 Power distribution...6
 Dismantling and installation..7
 Handling equipment..7
 Dismantling..7
 Installation...7
 Useful links...7
Cooling

Common primary chiller

- SciFi requirements (April 2016)
- Meeting (28 June 2016)
- Comparison of refrigeration options (M. Doubek)
- CO2 cooling meeting (13 October 2016)
- SciFi requirements, October 2016 (EDMS 1726874)
- VELO/UT requirements (EDMS 1851634)
- Review (11 October 2017)
- Work package (EDMS 1870688)
- Tender documents
- The chiller uses R449 as refrigerant.
- Weight estimate (February 2019, March 2019).
 ♦ Excel sheet
- Pipes through floor
- Layout of the chiller module frames
- Control cabinet
- Electrical cabinet
- Layout of the "bacs de retention"
- Top view of the chiller layout on the platform (including weights)

VELO/UT CO₂ cooling (MAUVE)

- EP-DT SharePoint
- UT requirements (EDMS 1487284)
- VELO requirements (EDMS 1556963)
- Welding guidelines

Cooling plants

- Engineering Design Review (3 December 2015)
- Work package (EDMS 1575817)
- Review (1 November 2017)
- P&ID (EDMS 1556956)
- Filtering scheme (EDMS 2003471)
- Process description (EDMS 2022099)

Transfer lines

- The vacuum-insulated concentric transfer lines between cooling plants and junction box were installed during the EYETS 2016/17.
 ♦ The inner pipe (liquid line) has a diameter of 10 mm.
 ♦ The two-phase return line has a diameter of 26.7 mm.
 ♦ The vacuum jacket has an outer diameter of 80 mm.
- Work package (EDMS 1609585)
- Meeting (28 April 2016)
- Meeting (4 May 2016)
- Meeting (18 May 2016)
- Proposed routing
 ♦ STP file
• Test with mockup pipes
• Tender documents (EDMS 1688007)
 ♦ Tender form
 ♦ Technical questionnaire
• Production drawings
• Mechanical and thermal analysis (EDMS 1739413)
 ♦ Report
 ♦ Presentation by Kriosystem
• Drawings
 ♦ STP file line A
 ♦ STP file line B
• CO₂ cooling meeting (10 November 2016)
• Pictures from the shielding wall dismantling
• Pressure tests
 ♦ EDMS 1751827, EDMS 1751828, EDMS 1751829, EDMS 1751830
• Cold tests
 ♦ Presentation by O. Crespo (27 March 2017)
 ◊ Reply from Kriosystem
 ♦ Pictures from cold test during TS1 (July 2017), Slides
 ♦ Cold test during TS2 (September 2017)
• Vacuum pump DAI

Junction box

• Meeting (21 September 2016)
• Meeting (19 October 2016)
• RICH1 mechanics meeting (26 October 2016)
• CO₂ cooling meeting (23 March 2017)
• List of cables
• Electrical patch panel (Slides by L. Roy)
• Meeting (31 August 2017) to discuss the installation
• Insulation material
• Pipes between transfer lines and junction box (E. Pilorz, July 2019), Geometric survey
• Safety volumes

Local boxes

• Meeting (16 January 2018)
• Meeting (26 March 2018)
• Components (Slides by D. Giakoumi)
• Meeting (17 September 2019)
• Drawings of the VELO local boxes (EDMS 2382854)
• Drawings of the UT local boxes (EDMS 2398341)
• Sensors: DAI 8109686, DAI 8123532, DAI 8109462, DAI 8107868

Infrastructure

• Cost estimate for brine circuit to the alcove
• Cost estimate for mixed water circuit to the alcove
• Cost estimate for power distribution, April 2015
• Cost estimate for compressed air circuit
• Rail for lifting plant components (pump motors)
Safety

- Radiological risk assessment (CMS, EDMS 1321932)
- Risk assessment for CO2 release (EDMS 2025971)

Cleaning

- MAUVE meeting (12 February 2020)
- Presentation at the Technical Board (P. Tropea, 25 February 2020)
- MAUVE meeting (4 March 2020)
- Opteon SF79 safety data sheet, technical data

SciFi SiPMs

- Requirements (input for common chiller study, April 2016)
- Meeting (28 June 2016)
- Coldbox EDR (4 August 2016)
- Comparison of refrigeration options (M. Doubek)
- LHCb SciFi Requirements on SiPM Cooling in a Common Chiller Scheme (EDMS 1726874)

- Cooling system EDR (11 May 2017)
 - Reviewers' report
- Work package (EDMS 1806622)
- Draft P&ID (EDMS 1806629)
- Meeting (7 June 2016)
- Meeting (29 June 2016)
- Cooling system PRR (8 December 2017)
 - Reviewers' report

- Estimated weight of the SciFi Novec plant
- Weight distribution of the SciFi Novec plant

- Meeting (18 October 2019)
- Tests (O. Crespo, August 2020)

Novec fluid

- Novec validation studies, Project report (P. Gorbounov, 2015)
- Novec fluid validation (P. Gorbounov, December 2016)
- NOVEC Fluid Qualification Report (EDMS 1751219)
- Novec material compatibility (EDMS 1849552)
- (Non-)compatibility with Festo PUN tubes
- Novec 649 Safety Data Sheet
- Purchase order
- Meeting with 3M (25 February 2020)
 - Report (EDMS 2338086), Slides (O. Crespo)

Transfer lines

- Price enquiry transfer lines (EDMS 2014888)
- Routing of foam-glass insulated lines
- Routing of vacuum-insulated lines
 - Screenshot
Purchase order (vacuum-insulated lines)
- Supports of DN50 valves

Manifolds
- Report from visit by EN-CV at AEV
 - Annex 1, Annex 2, Annex 3, Annex 4

Baby demo
- Dimensions
- Weight: 1250 kg.

Vacuum system
- SCROLLVAC 10 plus 1ph Scroll vacuum pump (STP)
- TURBOVAC 50 Vacuum Turbo Molecular Pump (3D model)

Dry gas system
- Work package EP-DT (EDMS 2052204)
- Meeting (25 January 2019)

RICH
- Existing cooling system (EDMS 1327542)
- Cooling meeting (18 March 2016)
- Requirements and considerations for the upgrade (EDMS 1627009)
- Work package (EDMS 1747707)
- Cooling system EDR (24 May 2017)
 - Reviewer's report
- Existing transfer lines
 - RICH1, TT (STP file)
 - RICH2, IT (STP file)
- Proposed rerouting (O. Jamet, 12 October 2017)
- Price enquiry transfer lines (EDMS 2014888)
- Requirements for routing and termination of the transfer lines (EDMS 2086089)
- Modified transfer lines (M. Doubek, 17 January 2019)
- Meeting (17 October 2019)

SciFi and UT electronics
- Corrosion phenomena in demineralized water cooling circuits (EDMS 718814)
- UT thermal load estimates
- Meeting (23 August 2016)
- UT infrastructure meeting (17 November 2016)
- Meeting (25 July 2017)
- Specifications for the UT PEPI cooling (EDMS 1845196)
- SciFi water cooling requirements (EDMS 1887449)
- Meeting (21 February 2018)
- Work package (EDMS 1909489)
- Meeting (7 November 2018) to discuss the manifold layout
• Routing of existing OT (and VELO) transfer lines (STP file)
• Price enquiry transfer lines (EDMS 2014888)
• P&ID of the upgraded cooling plant
• Manifold
• UT manifold June 2019, December 2019
• EN-CV uses Loctite 55 cord for sealing the pipe threads in the manifolds.
• The SciFi uses stainless-steel flexible lines inside the detector (data sheet). The initial plan was to use kevlar-reinforced EPDM hoses (data sheet) but this was abandoned because of space constraints (diameter of pipes and bending radii). The UT uses Festo PUN-H polyurethane tubes.
• Temperature sensors for DSS (data sheet, quote).

UT service bays (mixed water)

• UT Service Bay cooling requirements (EDMS 1845195)

VELO OPBs

• Fan tray magnetic field tests (CMS)
• Field measurements around the VELO (June 2016)
• Proposal for cooling the OPBs (R. Dumps, April 2017)
• OPB specifications

Dry gas

• Dry gas requirements (EDMS 2046586)
• Work package (EDMS 2114223)
• UT dry gas overview (EDMS 2360648)

Drier

SXL8

- The drier in the assembly hall is an ULTRAPAC MSD 0035 (order).
- Quote MSD 0150
- Quote MSD 0100
- Data sheet (drier)
- Data sheet (hygrometer)
- Data sheet (Ultrair filter)
- Data sheet (Ultra-filter DF)
UX85

- Purchase order

Oil residue measurements

- ISO 8573-1 limits.

![Extrait des valeurs limites ISO 8573-1](image1)

- Measurements in SXL8, June 2018 (EDMS 2004139)

Nitrogen

- N2 in TT (information from J. van Tilburg)

![Infrastructure](image2)

Infrastructure

- UXA-C platforms
- Verification of UXA-C platforms
- Replacement of UXA-C2 caillebottis, pdf
- Assessment by SMB of core drilling in the PZ slab
- Drawing of the concrete slabs in the PZ gable

Power distribution

- Meeting (29 June 2017)
- Meeting (4 May 2018)
Dismantling and installation

- Installation workshop (16 May 2018)
- Meeting (27 June 2017)
- Meeting (3 November 2017)

Handling equipment

- PA01084 hoist
- Canne à pêche CMU 1.2 t
 - CRR-02810
 - Canne à pêche (Meeting, 27 February 2018)
 - Canne à pêche (Meeting, 5 July 2018)

Dismantling

- Meeting (28 February 2017)
- Work package procedure document (EDMS 1763853)
- Work package procedure document (EDMS 1968334)

Installation

- MAUVE installation procedure (23 November 2017)
- Transport test of the MAUVE plants
- Lifting of the primary chiller frames

Useful links

- Pressure drop calculator
- Pipe sizing calculator