Table of Contents

Platforms and compilers supported by LHCb production software...1
 Supported compilers..1
 Production platforms (binary distribution available in optimised and debug modes)...............................1
 Development platforms (binary builds available in the nightlies)...2
 Future platforms...2
 Old production platforms...2
 Other ports...3
Platforms and compilers supported by LHCb production software

Source code and binaries for supported platforms are available in CVMFS (directory /cvmfs/lhcb.cern.ch/lib/lhcb - SLHCRELEASES). The following platform+compiler combinations are supported.

See also:

- Installing the LHCb Software on Linux Platforms not Officially Supported
- Using the CernVM virtual machine
- CodeAnalysisTools
- Supported platforms for distcc at CERN
- Installation and distribution of LHCb software is also tested via docker containers. Instructions can be found here.

On lxplus, you can check which compiler/platform combination is supported for a given application version. e.g.: `lb-sdb-query listPlatforms DaVinci v36r1p3`

Supported compilers

- On master branch (Run3 software)
 - gcc 8 (libstdc++ reference) with C++17
 - gcc 7 will be dropped after Gaudi v31r0 release
- On run2-patches branch (Run1+Run2 software)
 - gcc 6.2 with C++14 compilation enabled and new gcc ABI.
 - gcc 7 with C++14 compilation enabled and new gcc ABI.
- Older compilers in legacy analysis preservation branches, see nightlies summary page

Production platforms (binary distribution available in optimised and debug modes)

- CERN Scientific Linux 6 (SLC6) with gcc 6.2.* compiler in 64-bit mode (configurations x86_64-slc6-gcc62-opt, x86_64-slc6-gcc62-dbg (using gcc -Og option))
 - As of Gaudi v28r1, built with -m sse4.2
 - Default platform on lxplus since 19th February 2018.
 - Available only for Run1 and Run2 software
- CERN Scientific Linux 6 (SLC6) with gcc 7.* compiler in 64-bit mode (configurations x86_64-slc6-gcc7-opt, x86_64-slc6-gcc7-dbg (using gcc -Og option))
 - Built with -m sse4.2
- CentOS7 with gcc 7.* compiler in 64-bit mode (configurations x86_64-centos7-gcc7-opt, x86_64-centos7-gcc7-dbg (using gcc -Og option))
 - Built with -m sse4.2
- CERN Scientific Linux 6 (SLC6) with gcc 8.* compiler in 64-bit mode (configurations x86_64-slc6-gcc8-opt, x86_64-slc6-gcc8-dbg (using gcc -Og option))
 - Built with -m sse4.2
 - Available only for Upgrade software (master branch)
- CentOS7 with gcc 8.* compiler in 64-bit mode (configurations x86_64-centos7-gcc8-opt, x86_64-centos7-gcc8-dbg (using gcc -Og option))
 - Built with -m sse4.2
 - Available only for Upgrade software (master branch)
Development platforms (binary builds available in the nightlies)

- clang 6.0 (configuration x86_64-centos7-clang60-opt). See nightly slot: lhcb-lcg-dev3. To set up the environment (requires LbScripts >= v9r2p6):
 - export CMTCONFIG=x86_64-centos7-clang60-opt
 - then use it from cvmfs, e.g.: lb-dev --nightly lhcb-lcg-dev3 Brunel/HEAD

Future platforms

- icc18
 - Would be useful in order to use the Intel profiling tools, but currently has problems with range v3, that Intel are investigating
 - C++ standard support:
- ARM
 - A port to ARM is ongoing
- AVX512
 - A build for AVX512 is foreseen. This will be introduced together with a new platform ID convention, see proposal here

Old production platforms

- CERN Scientific Linux 6 (SLC6) with gcc 4.9.* compiler in 64-bit mode (configurations x86_64-slc6-gcc49-opt, x86_64-slc6-gcc49-dbg (using gcc -Og option))
 - C++14 features (subset supported by gcc49) were allowed as of LHCb v41r* software stack (compatibility with gcc48 platforms dropped)
 - Supported up to 2017-patches stack, discontinued as from LHCb v43r* stack
- CERN Scientific Linux 6 (SLC6) with gcc 4.8.* compiler in 64-bit mode (configurations x86_64-slc6-gcc48-opt, x86_64-slc6-gcc48-dbg (using gcc -Og option) and x86_64-slc6-gcc48-do0 (using -O0, only works with cmake).
 - gcc 4.8 (libstdc++ reference) with C++11 compilation enabled.
 - C++11 features are supported as of Gaudi v25r0 + LHCb v37r0 (compatibility with gcc46 platforms dropped)
 - See here for recipes to fix common C++11 compilation errors.
 - Discontinued as from LHCb v41r* software stack.
- CERN Scientific Linux 6 (SLC6) with gcc 4.6.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc46-opt, x86_64-slc5-gcc46-dbg)
 - Not available for projects based on Gaudi v25r0 or greater
 - C++11 compilation is not supported for this platform
 - See also here for porting and migration issues
- CERN Scientific Linux 5 (SLC5) with gcc 4.6.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc46-opt, x86_64-slc5-gcc46-dbg)
 - Not available for projects based on Gaudi v25r0 or greater
 - C++11 compilation is not supported for this platform
 - Help and suggestions for porting the code to gcc 4.6 can be found on Gcc46PortIssues.
- CERN Scientific Linux 5 (SLC5) with gcc 4.3.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc43-opt, x86_64-slc5-gcc43-dbg)
 - Not available for projects based on Gaudi v23r8 or greater
 - See here for issues with porting to gcc 4.3 from gcc 3.4.
- CERN Scientific Linux 5 (SLC5) in 64 bit mode with icc 11.1 compiler (CMT configurations x86_64-slc5-icc11-opt, x86_64-slc5-icc11-dbg)
Not available for projects based on Gaudi v23r7 or greater

♦ See here for usage instructions and recipes to fix common warnings.

● CERN Scientific Linux 5 (SLC5) with gcc 4.3.* compiler in 32-bit mode (CMT configurations i686-slc5-gcc43-opt, i686-slc5-gcc43-dbg)
 ♦ Not available for projects based on Gaudi v23r6 or greater
 ♦ This is the last available platform with gcc 32-bit support

● CERN Scientific Linux 4 (SLC4) with gcc 3.4.* compiler in 32-bit mode (CMT configurations slc4_ia32_gcc34, slc4_ia32_gcc34_dbg)
 ♦ Using 32-bit compatibility libraries on systems booted with 64-bit SLC4
 ♦ Not available for projects based on Gaudi v22r0 or greater

● CERN Scientific Linux 4 (SLC4) with gcc 3.4.* compiler in 64-bit mode (CMT configurations slc4_amd64_gcc34, slc4_amd64_gcc34_dbg)
 ♦ Not available for projects based on Gaudi v22r0 or greater

● CERN Scientific Linux 3 (SLC3) with gcc 3.2.3 compiler (CMT configurations slc3_ia32_gcc323, slc3_ia32_gcc323_dbg)
 ♦ Binary distribution available in optimised mode for projects older than December 2007
 ♦ Please note that, for releases in October and November 2006 (LHCb v21r8 to v21r11) binaries were built with the flags -msse2 -mfpmath=sse so they will not work on older machines that do not support the sse2 instruction set (e.g. Pentium III, AMD Sempron)
 ♦ Please note that access to SLC3 machines at CERN is no longer available
 ♦ Not available for projects based on LHCb v23r0 or greater.

● Windows 32 bit with Visual Studio 9 compiler (CMT configuration i686-winxp-vc9-dbg) (see also Windows Development Environment)
 ♦ Visual C++ 9.0
 ♦ Was dropped in October 2011

Other ports

● Brunel was successfully ported in 2013 to the ARM processor. See here for R&D for the ARM done at that time
● There is no plan for a port to Mac OSX 10.*. Some old instructions on building from source can be found here.