Table of Contents

Platforms and compilers supported by LHCb production software ..1
 Supported compilers and platforms (binary distribution available for x86_64 architecture, optimised and debug builds) ...1
 Production platforms (binary distribution available in optimised and debug modes)2
 Special development platforms (builds for master branch in the nightlies) ..2
 Other ports ...2
 Old production platforms ...2
Platforms and compilers supported by LHCb production software

Source code and binaries for supported platforms are available in CVMFS (directory /cvmfs/lhcb.cern.ch/lib/lhcb - SLHCBRELEASES). The following platform+compiler combinations are supported.

See also:
- Installing the LHCb Software on Linux Platforms not Officially Supported
- Using the CernVM virtual machine
- CodeAnalysisTools
- Supported platforms for distcc at CERN
- Installation and distribution of LHCb software is also tested via docker containers. Instructions can be found here.

On lxplus, you can check which compiler/platform combination is supported for a given application version. e.g.: lb-sdb-query listPlatforms DaVinci v36r1p3

Supported compilers and platforms (binary distribution available for x86_64 architecture, optimised and debug builds)

- On master branch (Run3 software development, production and analysis)
 - gcc 9 (libstdc++ reference) with C++17, on centos7
 - clang 8.0 (configuration x86_64-centos7-clang8-opt). Not fully supported (some failing compilations) but distribution available on cvmfs
- On run2-patches branch (Run1+Run2 software development and analysis)
 - gcc 9 (libstdc++ reference) with C++17, on centos7
 - clang 8.0 (configuration x86_64-centos7-clang8-opt). Not fully supported (some failing compilations) but distribution available on cvmfs
- On 2018-patches branch (2018 Moore, Reco18, Stripping34 (pp), Stripping35 (IFT) maintenance and incremental restripping)
 - gcc 6.2 with C++14 compilation enabled and new gcc ABI, on slc6 and centos7
 - gcc 7 with C++14 compilation enabled and new gcc ABI, on centos7
- On 2017-patches branch (2017 Moore, Reco17, Stripping29 (pp), Stripping33 (IFT) maintenance and incremental restripping)
 - gcc 6.2 with C++14 compilation enabled and new gcc ABI, on slc6 and centos7
 - gcc 4.9 with C++14 compilation enabled (subset supported by gcc49), on slc6
- On 2016-patches branch (2016 Reco16, Stripping28 (pp), Stripping30 (IFT) maintenance and incremental restripping)
 - gcc 4.9 with C++14 compilation enabled (subset supported by gcc49), on slc6
- On hlt-2016-patches branch (2016 Moore maintenance)
 - gcc 4.9 with C++14 compilation enabled (subset supported by gcc49), on slc6
- On reco15-patches branch (2015 Moore and Reco15 maintenance)
 - gcc 4.9 with C++11 only, on slc6 * On stripping24-patches branch (2015 Stripping24 (pp) maintenance and incremental restripping)
 - gcc 4.9 with C++14 compilation enabled (subset supported by gcc49), on slc6
- On stripping21-patches branch (2011 and 2012 Stripping21 (pp) incremental restripping)
 - gcc 4.9 with C++14 compilation enabled (subset supported by gcc49), on slc6
- On digi14-patches branch (digi14 digitisation maintenance)
Supported platforms (binary distribution available in optimised and debug modes)

- CentOS7 with gcc 9.* compiler in 64-bit mode (configurations x86_64-centos7-gcc9-opt, x86_64-centos7-gcc9-dbg (using gcc -Og option))
 - Built with -m sse4.2
 - Available for Run 3 software (master branch) and Run 1 and Run 2 software (run2-patches branch)

Special development platforms (builds for master branch in the nightlies)

- avx2+fma (used for throughput tests)
- do0 (debug without optimizations)
- skylake_avx512+vecwid256 (testing)

Other ports

- ARM
 - A port to ARM is ongoing. Main difficulty is vectorized code (vectorclass and VC library specifically), reverted to scalar on ARM
 - Brunel was successfully ported in 2013 to the ARM processor. See here for R&D for the ARM done at that time

- AMD
 - Plan to integrate AMD machines in the nightlies
 - There is no plan for a port to Mac OSX 10.*. Some old instructions on building from source can be found here.

Old production platforms

- CentOS7 with gcc 8.* compiler in 64-bit mode (configurations x86_64-centos7-gcc8-opt, x86_64-centos7-gcc8-dbg (using gcc -Og option))
 - Built with -m sse4.2
 - Available for Run 3 software (master branch) until v50r6 stack and Run 1 and Run 2 software (run2-patches branch) until v45r2 stack
 - Default platform on lxplus since 11th June 2019.
• CERN Scientific Linux 6 (SLC6) with gcc 8.* compiler in 64-bit mode (configurations x86_64-slc6-gcc8-opt, x86_64-slc6-gcc8-dbg (using gcc -Og option))
 ♦ Built with -m sse4.2
 ♦ Available for Run 3 software (master branch) until v50r4 stack and Run 1 and Run 2 software (run2-patches branch) until v45r0 stack
 ♦ Default platform on lxplus6 since 11th June 2019
• CERN Scientific Linux 6 (SLC6) with gcc 6.2.* compiler in 64-bit mode (configurations x86_64-slc6-gcc62-opt, x86_64-slc6-gcc62-dbg (using gcc -Og option))
 ♦ As of Gaudi v28r1, built with -m sse4.2
 ♦ Default platform on lxplus from 19th February 2018 to 10th June 2019.
 ♦ Available only on 2017-patches and 2018-patches branches
• CentOS7 with gcc 7.* compiler in 64-bit mode (configurations x86_64-centos7-gcc7-opt, x86_64-centos7-gcc7-dbg (using gcc -Og option))
 ♦ Built with -m sse4.2
 ♦ Available only on 2018-patches branch
• CERN Scientific Linux 6 (SLC6) with gcc 4.9.* compiler in 64-bit mode (configurations x86_64-slc6-gcc49-opt, x86_64-slc6-gcc49-dbg (using gcc -Og option))
 ♦ C++14 features (subset supported by gcc49) were allowed as of LHCb v41r* software stack (compatibility with gcc48 platforms dropped) but were enabled also for v40r*
 ♦ Supported up to 2017-patches stack, discontinued as from LHCb v43r* stack
• CERN Scientific Linux 6 (SLC6) with gcc 4.8.* compiler in 64-bit mode (configurations x86_64-slc6-gcc48-opt, x86_64-slc6-gcc48-dbg (using gcc -Og option) and x86_64-slc6-gcc48-do0 (using -O0, only works with cmake).
 ♦ gcc 4.8 (libstdc++ reference) with C++11 compilation enabled.
 ♦ C++11 features are supported as of Gaudi v25r0 + LHCb v37r0 (compatibility with gcc46 platforms dropped)
 ♦ See here for recipes to fix common C++11 compilation errors.
 ♦ Discontinued as from LHCb v41r* software stack.
• CERN Scientific Linux 6 (SLC6) with gcc 4.6.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc46-opt, x86_64-slc5-gcc46-dbg)
 ♦ Not available for projects based on Gaudi v25r0 or greater
 ♦ C++11 compilation is not supported for this platform
 ♦ See also here and here for porting and migration issues
• CERN Scientific Linux 5 (SLC5) with gcc 4.6.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc46-opt, x86_64-slc5-gcc46-dbg)
 ♦ Not available for projects based on Gaudi v25r0 or greater
 ♦ C++11 compilation is not supported for this platform
 ♦ Help and suggestions for porting the code to gcc 4.6 can be found on Gcc46PortIssues.
• CERN Scientific Linux 5 (SLC5) with gcc 4.3.* compiler in 64-bit mode (CMT configurations x86_64-slc5-gcc43-opt, x86_64-slc5-gcc43-dbg)
 ♦ Not available for projects based on Gaudi v23r8 or greater
 ♦ See here for issues with porting to gcc 4.3 from gcc 3.4.
• CERN Scientific Linux 5 (SLC5) in 64 bit mode with icc 11.1 compiler (CMT configurations x86_64-slc5-icc11-opt, x86_64-slc5-icc11-dbg)
 ♦ Not available for projects based on Gaudi v23r7 or greater
 ♦ See here for usage instructions and recipes to fix common warnings.
• CERN Scientific Linux 5 (SLC5) with gcc 4.3.* compiler in 32-bit mode (CMT configurations i686-slc5-gcc43-opt, i686-slc5-gcc43-dbg)
 ♦ Not available for projects based on Gaudi v23r6 or greater
 ♦ This is the last available platform with gcc 32-bit support
• CERN Scientific Linux 4 (SLC4) with gcc 3.4.* compiler in 32-bit mode (CMT configurations slc4_i386-gcc34, slc4_i386-gcc34_ddbg)
 ♦ Using 32-bit compatibility libraries on systems booted with 64-bit SLC4
 ♦ Not available for projects based on Gaudi v22r0 or greater
• CERN Scientific Linux 4 (SLC4) with gcc 3.4.* compiler in 64-bit mode (CMT configurations slc4_amd64_gcc34, slc4_amd64_gcc34_dbg)
 ◆ Not available for projects based on Gaudi v22r0 or greater
• CERN Scientific Linux 3 (SLC3) with gcc 3.2.3 compiler (CMT configurations slc3_ia32_gcc323, slc3_ia32_gcc323 dbg)
 ◆ Binary distribution available in optimised mode for projects older than December 2007
 ◆ Please note that, for releases in October and November 2006 (LHCb v21r8 to v21r11) binaries were built with the flags -msse2 -mfpmath=sse so they will not work on older machines that do not support the sse2 instruction set (e.g. Pentium III, AMD Sempron)
 ◆ Please note that access to SLC3 machines at CERN is no longer available
 ◆ Not available for projects based on LHCb v23r0 or greater.
• Windows 32 bit with Visual Studio 9 compiler (CMT configuration i686-winxp-vc9-dbg) (see also Windows Development Environment)
 ◆ Visual C++ 9.0
 ◆ Was dropped in October 2011

-- MarcoCattaneo - 2020-02-04