Table of Contents

UpgradeMonteCarloSamples..1
 Conditions..1
 Scripts...1
 Datasets..1
 Requests...3
UpgradeMonteCarloSamples

This page is to collect information regarding Upgrade MC for trigger development

TOC:

- Conditions
- Scripts
- Datasets
- Requests

Conditions

The monte-carlo has been produced using conddb and dddb tags:

- DDDB: dddb-20150702
- Condition DB: sim-20150716-vc-mu100
- CondDB().Upgrade = True

So the following job options are needed:

```python
daVinci().Simulation = True
daVinci().DataType = "Upgrade"
daVinci().InputType = 'LDST'
from Configurables import CondDB
condDB().Upgrade = True
daVinci().CondDBtag = "sim-20150716-vc-mu100"
daVinci().DDDBtag = "dddb-20150702"
```

As the trigger has not yet been run on these samples, the following settings are helpful:

```python
from Configurables import L0Conf
l0Conf().EnsureKnownTCK=False
```

Scripts

Some minimal scripts to run over these MC samples to produce ntuples can be found here:

https://gitlab.cern.ch/mwhitehe/upgrade_trigger_scripts

Datasets

- The samples can be found at the following path:
 sim://MC/Upgrade/Beam7000GeV-Upgrade-MagUp-Nu7.6-25ns-Pythia8/Sim08h-NoRichSpill/Reco15U3/ReconstructibleFiltered
(see the book-keeping: https://lhcb-web-dirac.cern.ch/DIRAC/LHCb-Production/lhcb_user/Data/BK/display)

 - MC reconstrucable filtered signal samples:

<table>
<thead>
<tr>
<th>Event type</th>
<th>Channel</th>
<th>Approx Filter efficiency</th>
<th>Nevts post-filter</th>
<th>WG</th>
<th>StrippingLines</th>
</tr>
</thead>
<tbody>
<tr>
<td>13246001</td>
<td>Bs2JPsiKKPiPi</td>
<td>10%</td>
<td>100000</td>
<td>B2CC</td>
<td>StrippingFullDSTDiMuonJpsi2MuMuDetachedLine</td>
</tr>
<tr>
<td>13144001</td>
<td>Bs2JPsiPhi</td>
<td>52%</td>
<td>100000</td>
<td>B2CC</td>
<td>StrippingBetaBSs2JpsiPhiDetachedLine</td>
</tr>
<tr>
<td>ID</td>
<td>Reactions</td>
<td>Efficiency</td>
<td>CPU Time</td>
<td>Control Region</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>13144020</td>
<td>Bs2psi2sPhi</td>
<td>32%</td>
<td>100000</td>
<td>B2CC</td>
<td></td>
</tr>
<tr>
<td>12165106</td>
<td>B2D0K_D02KsPiPi</td>
<td>8%</td>
<td>100000</td>
<td>B2OC</td>
<td></td>
</tr>
<tr>
<td>12265042</td>
<td>B2D0KpiPi_D02KPi</td>
<td>16%</td>
<td>100000</td>
<td>B2OC</td>
<td></td>
</tr>
<tr>
<td>11296013</td>
<td>Bd2DD</td>
<td>14%</td>
<td>100000</td>
<td>B2OC</td>
<td></td>
</tr>
<tr>
<td>13264021</td>
<td>Bs2DsPi</td>
<td>23%</td>
<td>100000</td>
<td>B2OC</td>
<td></td>
</tr>
<tr>
<td>15164001</td>
<td>Lb2LePi</td>
<td>21%</td>
<td>100000</td>
<td>B2OC</td>
<td></td>
</tr>
<tr>
<td>12103035</td>
<td>B2KKPi</td>
<td>32%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>12103121</td>
<td>B2KsK</td>
<td>15%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>11102003</td>
<td>Bd2KPi</td>
<td>42%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>11104121</td>
<td>Bd2KsPiPi</td>
<td>9%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>13102412</td>
<td>Bs2KKPi0</td>
<td>17%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>13104012</td>
<td>Bs2PhiPhi</td>
<td>23%</td>
<td>100000</td>
<td>BnoC</td>
<td></td>
</tr>
<tr>
<td>27163002</td>
<td>D*2D0Pi_D02KK</td>
<td>17%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>21163000</td>
<td>D2KKPi</td>
<td>9%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>21263002</td>
<td>D2KKPi.py</td>
<td>24.90%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>23103110</td>
<td>Ds2KsK.py</td>
<td>9%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>23163011</td>
<td>Ds2PiPiPi</td>
<td>9%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>27265001</td>
<td>Dst2D0Pi_D02KKPiPy</td>
<td>6%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>27163400</td>
<td>Dst2D0Pi_D02KPi0.py</td>
<td>17.60%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>27265101</td>
<td>Dst2D0Pi_D02KsKK.py</td>
<td>3%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>27215001</td>
<td>Dst2D0Pi_D02KPiKmunu.py</td>
<td>10.60%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>25103110</td>
<td>Lc2LPi.py</td>
<td>2.60%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>26264000</td>
<td>Sc02LePi_Lc2pKPiPy</td>
<td>13.10%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>26264020</td>
<td>Scpp2LePi_Lc2pKPiPy</td>
<td>11.60%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>26264030</td>
<td>Scst02LePi_Lc2pKPiPy</td>
<td>13.70%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>26264040</td>
<td>Scstpp2LePi_Lc2pKPiPy</td>
<td>14.90%</td>
<td>100000</td>
<td>Charm</td>
<td></td>
</tr>
<tr>
<td>11124001</td>
<td>Bd2K*ee</td>
<td>12%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>11114001</td>
<td>Bd2K*MuMu</td>
<td>27%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>11102262</td>
<td>Bd2KpGamma</td>
<td>17%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>11114101</td>
<td>Bd2KsGamma</td>
<td>15%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>11102202</td>
<td>Bd2KstGamma</td>
<td>19%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>13112001</td>
<td>Bs2MuMu</td>
<td>68%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>13102201</td>
<td>Bs2PhiGamma</td>
<td>17%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>13104212</td>
<td>Bs2PhiPhiGamma</td>
<td>17%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>12143001</td>
<td>Bu2JpsiK</td>
<td>51%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>12203224</td>
<td>Bu2K1Gamma</td>
<td>13%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
<tr>
<td>12203303</td>
<td>Bu2KstGamma</td>
<td>9%</td>
<td>100000</td>
<td>RD</td>
<td></td>
</tr>
</tbody>
</table>
Unfiltered cocktail samples for BG/rate estimations

<table>
<thead>
<tr>
<th>Event type</th>
<th>Channel</th>
<th>Nevts (unfiltered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>Inclusive bb</td>
<td>20000000</td>
</tr>
<tr>
<td>20000000</td>
<td>Inclusive cc</td>
<td>20000000</td>
</tr>
<tr>
<td>30000000</td>
<td>Minbias</td>
<td>60000000</td>
</tr>
</tbody>
</table>

Requests

New samples requested as of April 2016 are listed below

<table>
<thead>
<tr>
<th>Event type</th>
<th>Channel</th>
<th>Nevts post-filter</th>
<th>Working group</th>
</tr>
</thead>
<tbody>
<tr>
<td>27265100</td>
<td>Dst2D0pi_D02KSpipi</td>
<td>100000</td>
<td>Charm</td>
</tr>
<tr>
<td>21113000</td>
<td>D2pimumumu</td>
<td>100000</td>
<td>Charm</td>
</tr>
<tr>
<td>11574001</td>
<td>B2Dstaunu_tau2mununu</td>
<td>100000</td>
<td>Semileptonic</td>
</tr>
</tbody>
</table>

-- ConorFitzpatrick - 2015-08-25