Difference: AVFedotovLogA002 (1 vs. 7)

Revision 72010-02-01 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 232 to 232
 The variances of the first few k-statistics are given by
\begin{array}{lr}
Changed:
<
<
var(k_1) = \frac{\kappa_1}{N} & (2.5.6a) \\ \ var(k_2) = \frac{\kappa_4}{N} + \frac{2\kappa_2^2}{N-1} & (2.5.6b) \\ \ var(k_3) = \frac{\kappa_6}{N} +\frac{9(\kappa_2\kappa_4 + \kappa_3^2) }{N-1} + \frac{6N\kappa_2^3}{(N-1)(N-2)} & \qquad (2.5.6c) \
>
>
\mathrm{var}(k_1) = \frac{\kappa_1}{N} & (2.5.6a) \\ \ \mathrm{var}(k_2) = \frac{\kappa_4}{N} + \frac{2\kappa_2^2}{N-1} & (2.5.6b) \\ \ \mathrm{var}(k_3) = \frac{\kappa_6}{N} +\frac{9(\kappa_2\kappa_4 + \kappa_3^2) }{N-1} + \frac{6N\kappa_2^3}{(N-1)(N-2)} & \qquad (2.5.6c) \
  \ldots \ \end{array}
Changed:
<
<
An unbiased estimator for is given by
>
>
An unbiased estimator for is given by
  In the special case of a normal parent population,
Changed:
<
<
an unbiased estimator for is given by
>
>
an unbiased estimator for is given by
 
Line: 327 to 330
 

Removing the averaging brackets around and

Changed:
<
<
on the right hand side of the equations, one gets the estimators on the left hand side:
>
>
at the right hand side of the equations, one gets the estimators at the left hand side:
 
Line: 334 to 337
 
Added:
>
>
 

2.8 Unbiased estimator for

Added:
>
>
Replacing and in the expression (2.6.9) for by their estimators (2.7.4-5), gives the estimator for :

As , eq.(2.6.6), the same result (2.8.1) can be obtained using formula (2.5.7) by plugging into it the expressions (2.5.4b,c) for .

 

References

Changed:
<
<
[1] Weisstein, Eric W. "Raw Moment." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RawMoment.html
>
>
[1] Weisstein, Eric W. "Raw Moment." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RawMoment.html , pdf
 
Changed:
<
<
[2] Weisstein, Eric W. "Central Moment." http://mathworld.wolfram.com/CentralMoment.html
>
>
[2] Weisstein, Eric W. "Central Moment." http://mathworld.wolfram.com/CentralMoment.html , pdf
 
Changed:
<
<
[3] Weisstein, Eric W. "Cumulant." http://mathworld.wolfram.com/Cumulant.html
>
>
[3] Weisstein, Eric W. "Cumulant." http://mathworld.wolfram.com/Cumulant.html , pdf
 
Changed:
<
<
[4] Weisstein, Eric W. "Sample." http://mathworld.wolfram.com/Sample.html
>
>
[4] Weisstein, Eric W. "Sample." http://mathworld.wolfram.com/Sample.html , pdf
 
Changed:
<
<
[5] Weisstein, Eric W. "Sample Raw Moment." http://mathworld.wolfram.com/SampleRawMoment.html
>
>
[5] Weisstein, Eric W. "Sample Raw Moment." http://mathworld.wolfram.com/SampleRawMoment.html , pdf
 
Changed:
<
<
[6] Weisstein, Eric W. "Sample Mean." http://mathworld.wolfram.com/SampleMean.html
>
>
[6] Weisstein, Eric W. "Sample Mean." http://mathworld.wolfram.com/SampleMean.html , pdf
  [7] Weisstein, Eric W. "Sample Central Moment." http://mathworld.wolfram.com/SampleCentralMoment.html
Added:
>
>
, pdf
  [8] Weisstein, Eric W. "k-Statistic." http://mathworld.wolfram.com/k-Statistic.html
Added:
>
>
, pdf
  [9] Weisstein, Eric W. "Sample Variance." http://mathworld.wolfram.com/SampleVariance.html
Added:
>
>
, pdf
  [10] Weisstein, Eric W. "Standard Deviation." http://mathworld.wolfram.com/StandardDeviation.html
Added:
>
>
, pdf
  [11] Weisstein, Eric W. "Sample Variance Distribution." http://mathworld.wolfram.com/SampleVarianceDistribution.html \ No newline at end of file
Added:
>
>
, pdf

META FILEATTACHMENT attachment="WMathWorld.CentralMoment.pdf" attr="" comment="" date="1265016531" name="WMathWorld.CentralMoment.pdf" path="WMathWorld.CentralMoment.pdf" size="71015" stream="WMathWorld.CentralMoment.pdf" tmpFilename="/usr/tmp/CGItemp30198" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.Cumulant.pdf" attr="" comment="" date="1265016570" name="WMathWorld.Cumulant.pdf" path="WMathWorld.Cumulant.pdf" size="74977" stream="WMathWorld.Cumulant.pdf" tmpFilename="/usr/tmp/CGItemp30201" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.k-Statistic.pdf" attr="" comment="" date="1265016615" name="WMathWorld.k-Statistic.pdf" path="WMathWorld.k-Statistic.pdf" size="95876" stream="WMathWorld.k-Statistic.pdf" tmpFilename="/usr/tmp/CGItemp30097" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.RawMoment.pdf" attr="" comment="" date="1265016661" name="WMathWorld.RawMoment.pdf" path="WMathWorld.RawMoment.pdf" size="72151" stream="WMathWorld.RawMoment.pdf" tmpFilename="/usr/tmp/CGItemp30186" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.Sample.pdf" attr="" comment="" date="1265016706" name="WMathWorld.Sample.pdf" path="WMathWorld.Sample.pdf" size="29348" stream="WMathWorld.Sample.pdf" tmpFilename="/usr/tmp/CGItemp30153" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.SampleCentralMoment.pdf" attr="" comment="" date="1265016816" name="WMathWorld.SampleCentralMoment.pdf" path="WMathWorld.SampleCentralMoment.pdf" size="54587" stream="WMathWorld.SampleCentralMoment.pdf" tmpFilename="/usr/tmp/CGItemp30076" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.SampleMean.pdf" attr="" comment="" date="1265016853" name="WMathWorld.SampleMean.pdf" path="WMathWorld.SampleMean.pdf" size="34563" stream="WMathWorld.SampleMean.pdf" tmpFilename="/usr/tmp/CGItemp30100" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.SampleRawMoment.pdf" attr="" comment="" date="1265016894" name="WMathWorld.SampleRawMoment.pdf" path="WMathWorld.SampleRawMoment.pdf" size="33976" stream="WMathWorld.SampleRawMoment.pdf" tmpFilename="/usr/tmp/CGItemp30105" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.SampleVariance.pdf" attr="" comment="" date="1265016943" name="WMathWorld.SampleVariance.pdf" path="WMathWorld.SampleVariance.pdf" size="46137" stream="WMathWorld.SampleVariance.pdf" tmpFilename="/usr/tmp/CGItemp30234" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.SampleVarianceDistribution.pdf" attr="" comment="" date="1265016983" name="WMathWorld.SampleVarianceDistribution.pdf" path="WMathWorld.SampleVarianceDistribution.pdf" size="118340" stream="WMathWorld.SampleVarianceDistribution.pdf" tmpFilename="/usr/tmp/CGItemp30238" user="fedotov" version="1"
META FILEATTACHMENT attachment="WMathWorld.StandardDeviation.pdf" attr="" comment="" date="1265017027" name="WMathWorld.StandardDeviation.pdf" path="WMathWorld.StandardDeviation.pdf" size="58993" stream="WMathWorld.StandardDeviation.pdf" tmpFilename="/usr/tmp/CGItemp30023" user="fedotov" version="1"

Revision 62010-02-01 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 288 to 288
 

2.7 Unbiased estimators for and

Added:
>
>
According to eq.(2.5.5a-c) the unbiased estimators for , and are given by , and (see eq.(2.5.4c)) , respectively. It is also important to have estimators for and .

Eqs. (2.4.3d) and (2.6.10) can be combined into a matrix equation

Solving this system of equations relative to and gives

Removing the averaging brackets around and on the right hand side of the equations, one gets the estimators on the left hand side:

2.8 Unbiased estimator for

 

References

Revision 52010-02-01 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 269 to 271
 

According to eq.(2.4.3b), the expectation values for the variance and

Changed:
<
<
the statistic are (it agrees with the eq.(2.5.5b) too)
>
>
the statistic are
 
Added:
>
>
Surely, the eq.(2.6.7) agrees with the eq.(2.5.5b).

The variances are (eq.(4) in [11])


Eq.(23) in [11] gives a usefull expression for the :

2.7 Unbiased estimators for and

 

References

Line: 309 to 325
  [10] Weisstein, Eric W. "Standard Deviation." http://mathworld.wolfram.com/StandardDeviation.html
Added:
>
>
[11] Weisstein, Eric W. "Sample Variance Distribution." http://mathworld.wolfram.com/SampleVarianceDistribution.html

Revision 42010-02-01 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 35 to 35
 
Changed:
<
<

1.2 Central moments and their relations with the raw moment

>
>

1.2 Central moments. Variance. Relations with the raw moments

  A central moment is a moment taken about the mean [2] :
Line: 46 to 46
  \end{array}
Added:
>
>
By definition the second central moment is the variance which is usually denoted as [10]:
The square root of the variance is called [10] the standard deviation :
  The central moments are expressed via the raw moments using binomial transform [2] :
\begin{array}{lr} \displaystyle \mu_n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k \, \mu'_1{}^{n-k} \quad .
Changed:
<
<
& \qquad(1.2.2)
>
>
& \qquad(1.2.4)
  \end{array} In particular:
\begin{array}{lr}
Changed:
<
<
\mu_1 = 0 & (1.2.2a) \ \mu_2 = -\mu'_1{}^2 + \mu'_2 & (1.2.2b) \ \mu_3 = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (1.2.2c) \ \mu_4 = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (1.2.2d)
>
>
\mu_1 = 0 & (1.2.4a) \ \mu_2 = -\mu'_1{}^2 + \mu'_2 & (1.2.4b) \ \mu_3 = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (1.2.4c) \ \mu_4 = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (1.2.4d)
  \end{array} The raw moments are expressed via the central moments using
Line: 69 to 76
 (note and ):
\mu'_n = \sum_{k=0}^n \binom{n}{k} \mu_k \, \mu'_1{}^{n-k} \quad .
Changed:
<
<
\qquad(1.2.3)
>
>
\qquad(1.2.5)
  In particular:
\begin{array}{lr} \mu'_1 = \mu'_1 &\text{ (an identity)} \
Changed:
<
<
\mu'_2 = \mu_2{} + \mu'_1{}^2 & (1.2.3b) \ \mu'_3 = \mu_3 + 3 \mu_2 \mu'_1 + \mu'_1{}^3 & (1.2.3c) \
>
>
\mu'_2 = \mu_2{} + \mu'_1{}^2 & (1.2.5b) \ \mu'_3 = \mu_3 + 3 \mu_2 \mu'_1 + \mu'_1{}^3 & (1.2.5c) \
  \mu'_4 = \mu_4 + 4 \mu_3 \mu'_1 + 6 \mu_2 \mu'_1{}^2 + \mu'_1{}^4
Changed:
<
<
&\qquad (1.2.3d)
>
>
&\qquad (1.2.5d)
  \end{array}
Line: 211 to 218
  \end{array}
Added:
>
>
Since the is defined to be an unbiased estimator for the , one has , and then eqs.(1.3.3) give for the expectation values :
 The variances of the first few k-statistics are given by
\begin{array}{lr}
Changed:
<
<
var(k_1) = \frac{\kappa_1}{N} & (2.5.5a) \\ \ var(k_2) = \frac{\kappa_4}{N} + \frac{2\kappa_2^2}{N-1} & (2.5.5b) \\ \ var(k_3) = \frac{\kappa_6}{N} +\frac{9(\kappa_2\kappa_4 + \kappa_3^2) }{N-1} + \frac{6N\kappa_2^3}{(N-1)(N-2)} & \qquad (2.5.5c) \
>
>
var(k_1) = \frac{\kappa_1}{N} & (2.5.6a) \\ \ var(k_2) = \frac{\kappa_4}{N} + \frac{2\kappa_2^2}{N-1} & (2.5.6b) \\ \ var(k_3) = \frac{\kappa_6}{N} +\frac{9(\kappa_2\kappa_4 + \kappa_3^2) }{N-1} + \frac{6N\kappa_2^3}{(N-1)(N-2)} & \qquad (2.5.6c) \
  \ldots \ \end{array}

An unbiased estimator for is given by

Changed:
<
<
>
>
  In the special case of a normal parent population, an unbiased estimator for is given by
Changed:
<
<
>
>

2.6 Sample variance

The sample variance is the second central moment (2.4.1):

where is the sample mean (2.3.1) . It is commonly written as [9]
or sometimes

The square root of the sample variance is called the sample standard deviation [10]

Another widespread definition for the sample standard deviation is
where
By definition the statistic is an alternative name for the statistic defined above, see eq.(2.5.4b):

According to eq.(2.4.3b), the expectation values for the variance and the statistic are (it agrees with the eq.(2.5.5b) too)

 

References

Line: 256 to 301
  [8] Weisstein, Eric W. "k-Statistic." http://mathworld.wolfram.com/k-Statistic.html
Added:
>
>
[9] Weisstein, Eric W. "Sample Variance." http://mathworld.wolfram.com/SampleVariance.html

[10] Weisstein, Eric W. "Standard Deviation." http://mathworld.wolfram.com/StandardDeviation.html

Revision 32010-01-31 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 176 to 176
 
Added:
>
>

2.5 k-Statistics

The th k-statistic is [8] the unique symmetric unbiased estimator of the cumulant (see. e.g. eq.(1.3.4)), i.e., is defined so that

In addition, the variance
is a minimum compared to all other unbiased estimators of .

The k-statistics can be given in terms of the power sums (2.1.1)

Alternatively, they can be expressed via the sample mean (2.3.1) and central moments (2.4.1) by

The variances of the first few k-statistics are given by

An unbiased estimator for is given by

In the special case of a normal parent population, an unbiased estimator for is given by

 

References

Line: 201 to 252
  [7] Weisstein, Eric W. "Sample Central Moment." http://mathworld.wolfram.com/SampleCentralMoment.html
Added:
>
>
[8] Weisstein, Eric W. "k-Statistic." http://mathworld.wolfram.com/k-Statistic.html

Revision 22010-01-22 - AlexanderFedotov

Line: 1 to 1
 
META TOPICPARENT name="AVFedotovLogA"
Line: 14 to 14
 
Changed:
<
<

Population quantities

>
>

1 Population quantities

  Let have a probability density function
Changed:
<
<

Moments = Raw Moments = Crude Moments

>
>

1.1 Moments = Raw Moments = Crude Moments. Mean.

 

A raw moment

Line: 27 to 27
 is a moment taken about 0 [1] :
\begin{array}{lr} \displaystyle
Changed:
<
<
\mu'_n = \langle x^n \rangle= \int x^n P(x) dx & \qquad (1)
>
>
\mu'_n = \langle x^n \rangle= \int x^n P(x) dx & \qquad (1.1.1)
  \end{array}
Added:
>
>
By definition, the first moment is the mean of the distribution, ,
 
Changed:
<
<

Central moments and their relations with the raw moment

>
>

1.2 Central moments and their relations with the raw moment

  A central moment is a moment taken about the mean [2] :
\begin{array}{lr} \displaystyle \mu_n = \langle (x - \mu)^n \rangle= \int (x - \mu)^n P(x) \ dx \quad .
Changed:
<
<
& \qquad (2)
>
>
& \qquad (1.2.1)
  \end{array}
Line: 48 to 52
 
\begin{array}{lr} \displaystyle \mu_n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k \, \mu'_1{}^{n-k} \quad .
Changed:
<
<
& \qquad(3)
>
>
& \qquad(1.2.2)
  \end{array} In particular:
\begin{array}{lr}
Changed:
<
<
\mu_1 = 0 & (3a) \ \mu_2 = -\mu'_1{}^2 + \mu'_2 & (3b) \ \mu_3 = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (3c) \ \mu_4 = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (3d)
>
>
\mu_1 = 0 & (1.2.2a) \ \mu_2 = -\mu'_1{}^2 + \mu'_2 & (1.2.2b) \ \mu_3 = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (1.2.2c) \ \mu_4 = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (1.2.2d)
  \end{array} The raw moments are expressed via the central moments using
Line: 65 to 69
 (note and ):
\mu'_n = \sum_{k=0}^n \binom{n}{k} \mu_k \, \mu'_1{}^{n-k} \quad .
Changed:
<
<
\qquad(4)
>
>
\qquad(1.2.3)
  In particular:
\begin{array}{lr} \mu'_1 = \mu'_1 &\text{ (an identity)} \
Changed:
<
<
\mu'_2 = \mu_2{} + \mu'_1{}^2 & (4b) \ \mu'_3 = \mu_3 + 3 \mu_2 \mu'_1 + \mu'_1{}^3 & (4c) \
>
>
\mu'_2 = \mu_2{} + \mu'_1{}^2 & (1.2.3b) \ \mu'_3 = \mu_3 + 3 \mu_2 \mu'_1 + \mu'_1{}^3 & (1.2.3c) \
  \mu'_4 = \mu_4 + 4 \mu_3 \mu'_1 + 6 \mu_2 \mu'_1{}^2 + \mu'_1{}^4
Changed:
<
<
&\qquad (4d)
>
>
&\qquad (1.2.3d)
  \end{array}

Changed:
<
<

Cumulants and their expressions via momemts

>
>

1.3 Cumulants and their expressions via moments

  The characteristic function associated with the probability density function is defined as a Fourier transform [3] :
Changed:
<
<
>
>
 The cumulants are then defined by
Changed:
<
<
>
>
 They can be expressed through raw moments :
\begin{array}{lr}
Changed:
<
<
\kappa_1 = \mu'_1 & (7a) \ \kappa_2 = \mu'_2 - \mu'_1{}^2 & (7b) \ \kappa_3 = 2\mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (7c) \
>
>
\kappa_1 = \mu'_1 & (1.3.3a) \ \kappa_2 = \mu'_2 - \mu'_1{}^2 & (1.3.3b) \ \kappa_3 = 2\mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (1.3.3c) \
  \kappa_4 = -6 \mu'_1{}^4 + 12 \mu'_1{}^2 \mu'_2 - 3 \mu'_2{}^2
Changed:
<
<
-4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (7d) \
>
>
-4 \mu'_1 \mu'_3 + \mu'_4 & \qquad (1.3.3d) \
  \ldots & \ \end{array} or in terms of central moments :
\begin{array}{lr}
Changed:
<
<
\kappa_1 = \mu & (8a) \ \kappa_2 = \mu_2 & (8b) \ \kappa_3 = \mu_3 & (8c) \ \kappa_4 = \mu_4 - 3 \mu_2{}^2 & \qquad (8d) \
>
>
\kappa_1 = \mu & (1.3.4a) \ \kappa_2 = \mu_2 & (1.3.4b) \ \kappa_3 = \mu_3 & (1.3.4c) \ \kappa_4 = \mu_4 - 3 \mu_2{}^2 & \qquad (1.3.4d) \
  \ldots \ \end{array} where is the mean and is the variance.
Added:
>
>

2 Sample quantities

A sample is a subset of a population [4]

where is the size of the sample.

2.1 Power sums

Power sum is the sum of th powers of the sample elements:

2.2 Sample raw moments

The th sample raw moment is defined as [5]

They are related to the power sums (2.1.1) by
They are unbiased estimators of the population raw moments (1.1.1) :

2.3 Sample mean

The sample mean [6] is defined by

It is equal to the sample first moment (2.2.1),
It is an unbiased estimator for the population mean (1.1.2)

2.4 Sample central moments

The th sample central moment is defined as [7]

where is the sample mean . The first few sample central moments are related to power sums by

In terms of the population central moments, the expectation values of the first few sample central moments are

 

References

Changed:
<
<
[1] Wolfram MathWorld Raw Moment
>
>
[1] Weisstein, Eric W. "Raw Moment." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/RawMoment.html
 
Changed:
<
<
[2] Wolfram MathWorld Central Moment
>
>
[2] Weisstein, Eric W. "Central Moment." http://mathworld.wolfram.com/CentralMoment.html
 
Deleted:
<
<
[3] Wolfram MathWorld Cumulant
 \ No newline at end of file
Added:
>
>
[3] Weisstein, Eric W. "Cumulant." http://mathworld.wolfram.com/Cumulant.html

[4] Weisstein, Eric W. "Sample." http://mathworld.wolfram.com/Sample.html

[5] Weisstein, Eric W. "Sample Raw Moment." http://mathworld.wolfram.com/SampleRawMoment.html

[6] Weisstein, Eric W. "Sample Mean." http://mathworld.wolfram.com/SampleMean.html

[7] Weisstein, Eric W. "Sample Central Moment." http://mathworld.wolfram.com/SampleCentralMoment.html

Revision 12010-01-22 - AlexanderFedotov

Line: 1 to 1
Added:
>
>
META TOPICPARENT name="AVFedotovLogA"

-- AlexanderFedotov - 04-Dec-2009

Sample Statistics

Population quantities

Let have a probability density function

Moments = Raw Moments = Crude Moments

A raw moment (or just a moment, or a crude moment ) is a moment taken about 0 [1] :

Central moments and their relations with the raw moment

A central moment is a moment taken about the mean [2] :

The central moments are expressed via the raw moments using binomial transform [2] :

In particular:
The raw moments are expressed via the central moments using inverse binomial transform [1] (note and ):
In particular:

Cumulants and their expressions via momemts

The characteristic function associated with the probability density function is defined as a Fourier transform [3] :

The cumulants are then defined by
They can be expressed through raw moments :
or in terms of central moments :
where is the mean and is the variance.

References

[1] Wolfram MathWorld Raw Moment

[2] Wolfram MathWorld Central Moment

[3] Wolfram MathWorld Cumulant

 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback