%ATLASPUBLICHEADER% ---+!! <nop>Level-1 Calorimeter Trigger Public Results %TOC% <!--optional--> %STARTINCLUDE% ---++ Introduction Approved plots that can be shown by ATLAS speakers at conferences and similar events. *Please do not add figures on your own.* Contact the responsible project leader in case of questions and/or suggestions. Follow the guidelines on the [[TriggerPublicResults#Guidelines][trigger public results]] page. [ For !L1Calo members: See also a discussion on the plot-approval procedure at the !L1Calo Weekly meeting (9 July 2018): [[https://twiki.cern.ch/twiki/pub/Atlas/LevelOneCaloTheses/L1Calo_Plot_Approval_Procedure_20180709.pdf][link to PDF]]. ] ---++ Performance studies of the ATLAS !L1Calorimeter trigger upgrade for run 3 (July 2, 2018) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr> <td bgcolor="#eeeeee"> Per-jet efficiency computed from a HH→bb(bb) Monte Carlo simulation comparing the performance of the Run 2 trigger system with the proposed system after the Phase-1 upgrade, described in detail in [[https://cds.cern.ch/record/1602235/][ATLAS-TDR-023]]. The efficiency is shown for Run 2 L1 jets (black) and jFEX jets (blue). The jFEX algorithm is with a new optimisation that uses a circular 0.9x0.9 sliding window with a 0.3x0.3 seed and a search window for the local maximum of 0.5x0.5. The offline Anti-kt reconstruction algorithm (red) runs on jTowers with a radius parameter of R=0.4 and is shown for reference, it is not planned to run in the hardware. The efficiency for run 2 jets is shown as an illustration of what is possible in the current hardware. For both the jFEX algorithm and the offline Anti-kt reference, a noise threshold of 2 !GeV is applied to all jTowers to suppress noise from electronics and pileup. The thresholds of the three methods have been tuned to have the same rate. The efficiency is computed with respect to the calibrated offline jets with |η| < 2.5 and %$p_T$% > 30 !GeV. [[https://cds.cern.ch/record/2309479][ATL-COM-DAQ-2018-019]] </td> <td align="center"> <img src="%ATTACHURLPATH%/Inclusive.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/Inclusive.png][png]] [[%ATTACHURLPATH%/Inclusive.pdf][pdf]] [[%ATTACHURLPATH%/Inclusive.eps][eps]] </td> </tr> <tr> <td bgcolor="#eeeeee"> Per-jet efficiency for jets with nearby jets computed from a HH→bb(bb) Monte Carlo simulation comparing the performance of the Run 2 trigger system with the proposed system after the Phase-1 upgrade, described in detail in [[https://cds.cern.ch/record/1602235/][ATLAS-TDR-023]]. The efficiency is shown for Run 2 L1 jets (black) and jFEX jets (blue). The jFEX algorithm is with a new optimisation that uses a circular 0.9x0.9 sliding window with a 0.3x0.3 seed and a search window for the local maximum of 0.5x0.5. The offline Anti-kt reconstruction algorithm (red) runs on jTowers with a radius parameter of R=0.4 and is shown for reference, it is not planned to run in the hardware. The efficiency for run 2 jets is shown as an illustration of what is possible in the current hardware. For both the jFEX algorithm and the offline Anti-kt reference, a noise threshold of 2 !GeV is applied to all jTowers to suppress noise from electronics and pileup. The thresholds of the three methods have been tuned to have the same rate. The efficiency is computed with respect to the calibrated offline jets with |η| < 2.5 and %$p_T$% > 30 !GeV, where at least 1 jet above 30 !GeV is required to be within ΔR=0.6 of the probe jet. [[https://cds.cern.ch/record/2309479][ATL-COM-DAQ-2018-019]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ClosebyJets.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ClosebyJets.png][png]] [[%ATTACHURLPATH%/ClosebyJets.pdf][pdf]] [[%ATTACHURLPATH%/ClosebyJets.eps][eps]] </td> </tr> <tr> <td bgcolor="#eeeeee"> 
Efficiency computed from a Z→ee Monte Carlo simulation comparing the performance of the existing electron trigger with the proposed trigger that will be implemented during the Phase-1 upgrade, described in detail [[https://cds.cern.ch/record/1602235/][ATLAS-TDR-023]]. Details of the electron isolation and ET calculation are also described in [[https://cds.cern.ch/record/1602235/][ATLAS-TDR-023]]. The isolation thresholds were tuned to give the lowest rate while maintaining 95% efficiency for electrons with truth 30 !GeV < %$E_T$% < 50 !GeV. For clusters with %$E_T$% > 60 !GeV, the isolation requirement was removed for better comparison, as this is also done in the current electron trigger. The threshold of 21 !GeV (blue) has been chosen such that the trigger has about the same rate as the Run 2 trigger L1_EM24VHI (black) [[https://cds.cern.ch/record/2262803][ATL-COM-DAQ-2017-033]]. The threshold of 28 !GeV (red) results in about half that rate. [[https://cds.cern.ch/record/2309479][ATL-COM-DAQ-2018-019]] </td> <td align="center"> <img src="%ATTACHURLPATH%/Electron.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/Electron.png][png]] [[%ATTACHURLPATH%/Electron.pdf][pdf]] [[%ATTACHURLPATH%/Electron.eps][eps]] </td> </tr> <tr> <td bgcolor="#eeeeee"> Efficiency of the new missing transverse energy (MET) algorithm proposed for the Run 3 jFEX [[https://cds.cern.ch/record/1602235/][ATLAS-TDR-023]], shown for a simulated sample of ZH→ννbb events measured with respect to the truth MET. The MET in the jFEX is computed from the vector sum of all towers with ET above an η-dependent threshold. The threshold ranges from 0-5 !GeV and is designed to suppress noise arising from electronics and pileup. The MET threshold (abbreviated XE) was tuned to 57 !GeV to give approximately the same rate as L1_XE50 in Run 2 data. The efficiency of the jFEX MET is compared to L1_XE50 as measured in a selection of Z→μμ events, where the Z boson serves as proxy for the MET, as muons are not included in the calculation of MET in the trigger. This efficiency plot is taken directly from [[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/MissingEtTriggerPublicResults][MissingEtTriggerPublicResults]]. [[https://cds.cern.ch/record/2309479][ATL-COM-DAQ-2018-019]] </td> <td align="center"> <img src="%ATTACHURLPATH%/MET.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/MET.png][png]] [[%ATTACHURLPATH%/MET.pdf][pdf]] [[%ATTACHURLPATH%/MET.eps][eps]] </td> </tr> </tbody> </table> ---++ L1Calo Performance plots 2018 (Run 2) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr> <td bgcolor="#eeeeee"> <b>L1Topo Hardware-Simulation Mismatches: </b> Mismatch rates between !L1Topo hardware and simulation. First row shows for each trigger chain the ratio between number of events selected by the simulation but not by the hardware and the total number of events accepted by the simulation. Second row shows the ratio of number of events selected by the hardware but not by the simulation and the total number of events accepted by hardware. Masses and energies are expressed in !GeV and angles in radians. Sub-indexes i, j denote lists of trigger objects, 1 means leading in terms of transverse momentum. [[https://cds.cern.ch/record/2644454][ATL-COM-DAQ-2018-170]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_1.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_1.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_1.pdf][pdf]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_1.eps][eps]] </td> </tr> <tr> <td bgcolor="#eeeeee"> <b>L1Topo Hardware-Simulation Mismatches: </b> Mismatch rates between !L1Topo hardware and simulation. First row shows for each trigger chain the ratio between number of events selected by the simulation but not by the hardware and the total number of events accepted by the simulation. Second row shows the ratio of number of events selected by the hardware but not by the simulation and the total number of events accepted by hardware. Masses and energies are expressed in !GeV and angles in radians. Sub-indexes i, j denote lists of trigger objects; bx+1 refers to the bunch crossing immediately after the event. Super-indexes C, F for jets denote central (|η|<2.5) and full range (|η|<4.9), respectively. [[https://cds.cern.ch/record/2644454][ATL-COM-DAQ-2018-170]] </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_2.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_2.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_2.pdf][pdf]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-170_plot_2.eps][eps]] </td> </tr> </tbody> </table> ---++ L1Calo Performance plots 2017 (Run 2) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr> <td bgcolor="#eeeeee"> <b>Average Pedestal Shift (8b4e): </b> The plots show the average deviation of the digitised Level-1 Calorimeter Trigger input signals from the expected flat baseline as function of the bunch crossing (BC) number for a selected part of the LHC orbit. The pedestal baseline is the signal height in absence of energy depositions in a given trigger tower. One FADC count corresponds to a transverse energy deposit of approximately 250 !MeV. Shown is the mean pedestal shift taking into account all towers of the LAr Electromagnetic Calorimeter Barrel A partition (EMB-A) [<b>left</b>] and of the LAr Forward Calorimeter 1 A partition (FCAL1-A) [<b>right</b>] for lumi blocks 78 and 540 of ATLAS run 340368, corresponding to average mu values of 58.1 and 38.1, respectively. The corresponding LHC fill is 6370 in 8b4e bunch filling scheme. Only read out FADC values corresponding to filled LHC bunches are taken into account. [[https://cds.cern.ch/record/2300639][ATL-COM-DAQ-2018-004]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig01.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig01.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig01.pdf][pdf]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig04.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig04.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig04.pdf][pdf]] </td> </tr> <tr> <td bgcolor="#eeeeee"> <b>Average Pedestal Shift (8b4e): </b> The plots show the average deviation of the digitised Level-1 Calorimeter Trigger input signals from the expected flat baseline as function of the bunch crossing (BC) number for a selected part of the LHC orbit. The pedestal baseline is the signal height in absence of energy depositions in a given trigger tower. One FADC count corresponds to a transverse energy deposit of approximately 250 !MeV. Shown is the mean pedestal shift taking into account all towers of the LAr Electromagnetic Calorimeter Barrel A partition (EMB-A) [<b>left</b>] and of the LAr Forward Calorimeter 1 A partition (FCAL1-A) [<b>right</b>] for lumi blocks 78 and 540 of ATLAS run 340368, corresponding to average mu values of 58.1 and 38.1, respectively. The corresponding LHC fill is 6370 in 8b4e bunch filling scheme. The full readout window of 5 FADC counts centred around the triggered bunch crossing is taken into account. Filled bunches are indicated by grey background colour. [[https://cds.cern.ch/record/2300639][ATL-COM-DAQ-2018-004]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig02.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig02.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig02.pdf][pdf]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig05.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig05.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig05.pdf][pdf]] </td> </tr> <tr> <td bgcolor="#eeeeee"> <b>Average Pedestal Correction (8b4e): </b> The plots show the pedestal correction as function of the bunch crossing (BC) number for a selected part of the LHC orbit. It is continuously calculated and applied by the firmware of the new Multichip Modules in the !PreProcessor electronics of the Level-1 Calorimeter Trigger (!L1Calo) in order to correct online the ET calculation result of each trigger tower for pile-up induced baseline shifts. To enhance the signal over noise ratio, !L1Calo uses a finite impulse response filter operated on five consecutive values of the digitised input signal. The pedestal correction in units of FIR Counts (i.e. weighted FADC counts) is the difference between an average of each trigger tower's digital filter output over 65536 LHC orbits (approximately 6s) and a corresponding target value determined by the filter output in absence of any energy deposition. Shown is the mean correction for all towers of the LAr Electromagnetic Calorimeter Barrel A partition (EMB-A) [<b>left</b>] and of the LAr Forward Calorimeter 1 A partition (FCAL1-A) [<b>right</b>] for lumi blocks 78 and 540 of ATLAS run 340368, corresponding to average mu values of 58.1 and 38.1, respectively. The corresponding LHC fill is 6370 in 8b4e bunch filling scheme. A readout value of the pedestal correction is available only for filled bunches. [[https://cds.cern.ch/record/2300639][ATL-COM-DAQ-2018-004]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig03.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig03.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig03.pdf][pdf]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig06.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig06.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2018-004-fig06.pdf][pdf]] </td> </tr> <tr> <td bgcolor="#eeeeee"> <b>Pedestal Correction: </b> The plot shows the Pedestal Correction as calculated by the firmware of the new Multichip Module (nMCM), a component on the !PreProcessor of the Level-1 Calorimeter Trigger (!L1Calo), for a selected part of the LHC orbit. The pedestal correction is computed for each bunch crossing, and is plotted in units of weighted ADC counts. The average pedestal correction is calculated over 65536 LHC orbits, which corresponds to a duration of approximately 6 seconds. Shown is the correction for the LAr calorimeter Electromagnetic Barrel A partition (EMB-A). <br> This plot is taken from the !L1Calo offline monitoring that uses a dedicated data stream (express stream). The data was taken by ATLAS in run 327342 with =33.8. The corresponding LHC fill is 5849. [[https://cds.cern.ch/record/2272013][ATL-COM-DAQ-2017-064]] </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_correction.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_correction.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_correction.pdf][pdf]] </td> </tr> <tr> <td bgcolor="#eeeeee"> <b>Average Pedestal Shift: </b> The plot shows the average deviation from the expected flat baseline of the digitized !L1Calo input signals as a function of the Bunch Crossing (BC) Number for a selected part of the LHC orbit. The baseline is the signal height in the absence of energy depositions in a given trigger tower. For this plot only input signals from the LAr calorimeter Electromagnetic Barrel A partition (EMB-A) are taken into account. The average is constructed over all trigger towers without significant energy depositions and over all considered events in the given ATLAS run. One ADC count corresponds to a transverse energy deposition of approximately 0.25 !GeV. This plot is taken from the !L1Calo offline monitoring that uses a dedicated data stream (express stream). The data was taken by ATLAS in run 327342 with =33.8. The corresponding LHC fill is 5849. [[https://cds.cern.ch/record/2272013][ATL-COM-DAQ-2017-064]] </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_shift.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_shift.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2017-064_l1calo_pedestal_shift.pdf][pdf]] </td> </tr> </tbody> </table> ---++ L1Calo Performance plots 2016 (Run 2) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <td bgcolor="#eeeeee"> Comparison of the !L1Topo decision from hardware and from simulation for several !L1Topo trigger items. For this plot, 258k events have been analysed. Empty bins correspond to: < 3.8x10<sup>−4</sup> [%]. Simulated decisions are either from the non-bitwise implementation or from the bitwise-correct one. The fraction of events for which both simulated outputs disagree with the hardware output is indicated in blue. The fraction of events for which only the bitwise-correct (non-bitwise) simulation differs from the hardware output is indicated in red (green). The bitwise-correct implementation can significantly improve the accuracy of the simulation. Only the !L1Topo items that were used in active trigger in 2016 run are shown. Persistent mismatches (blue/red areas) are mostly due to small rounding errors in the invariant mass calculation. [[https://cds.cern.ch/record/2244777][ATL-COM-DAQ-2017-008]] </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2017-008.png" alt="ATL-COM-DAQ-2017-008.png" width="300" /><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2017-008.png][png]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> Fraction of events for which the !L1Topo ΔηΔϕ algorithm produced a different outcome in firmware and in simulation. The allowed ranges of Δη and Δϕ are indicated, as well as the pT requirements used to select the input object used to compute these quantities. A small fraction of differences is currently expected because the firmware quantities are implemented as integers, while the ones in simulation are floating point values. [[https://cds.cern.ch/record/2217026][ATL-COM-DAQ-2016-143]] <br><br> <b>Right: </b> Fraction of events for which the !L1Topo H_{T} algorithm produced a different outcome in firmware and in simulation. The minimum required H_{T} is indicated, as well as the requirements applied to the jets used to compute H_{T}. A small fraction of differences is currently expected because the firmware quantities are implemented as integers, while the ones in simulation are floating point values. [[https://cds.cern.ch/record/2217026][ATL-COM-DAQ-2016-143]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig1.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig1.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig1.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig2.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig2.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2016-143-fig2.eps][eps]] </td> </tbody> </table> ---++ L1Calo Performance plots 2015 (Run 2) ---+++ Performance Plots approved for Autumn Conferences: [[https://cds.cern.ch/record/2053123][ATL-COM-DAQ-2015-150]] (Sep 21, 2015) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The trigger rate for the missing ET trigger with a threshold at 35 !GeV per bunch is plotted as function of the inst. Lumi per bunch. The rates are shown for different settings with and w/o pedestal correction applied. The pedestal correction minimise pile-up effects and linearises the trigger rate. <br><br> <b>Right: </b> The trigger rate for the missing ET trigger with a threshold at 50 !GeV per bunch is plotted as function of the inst. Lumi per bunch. The rates are shown for different settings with and w/o pedestal correction applied. The pedestal correction minimise pile-up effects and linearises the trigger rate. </td> <td align="center"> <img src="%ATTACHURLPATH%/final_XE35ratesB_vs_instlumiB_50ns.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/final_XE35ratesB_vs_instlumiB_50ns.png][png]] [[%ATTACHURLPATH%/final_XE35ratesB_vs_instlumiB_50ns.pdf][pdf]] [[%ATTACHURLPATH%/final_XE35ratesB_vs_instlumiB_50ns.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/final_XE50ratesB_vs_instlumiB_50ns.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/final_XE50ratesB_vs_instlumiB_50ns.png][png]] [[%ATTACHURLPATH%/final_XE50ratesB_vs_instlumiB_50ns.pdf][pdf]] [[%ATTACHURLPATH%/final_XE50ratesB_vs_instlumiB_50ns.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The figure shows the trigger rates per bunch for various em triggers in 25 and 50ns operation as function of the inst. Lumi per bunch. A linear behaviour for all items is observed as well as a good agreement for the different bunch spacing schemes. EM12 and EM15 are triggers with thresholds at 12 and 15 !GeV respectively. !EM20VHI has additional requirements on isolation (electromagnetic and hadronic) applied. <br><br> <b>Right: </b> The trigger rate for the missing ET trigger with a threshold at 35 !GeV per bunch is plotted as function of the inst. Lumi per bunch. The rates are shown for different settings with and w/o pedestal correction applied. The pedestal correction minimise pile-up effects and linearises the trigger rate. </td> <td align="center"> <img src="%ATTACHURLPATH%/EMratesB_vs_instlumiB_final.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/EMratesB_vs_instlumiB_final.png][png]] [[%ATTACHURLPATH%/EMratesB_vs_instlumiB_final.pdf][pdf]] [[%ATTACHURLPATH%/EMratesB_vs_instlumiB_final.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/XE35ratesB_vs_instlumiB_50ns_final.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/XE35ratesB_vs_instlumiB_50ns_final.png][png]] [[%ATTACHURLPATH%/XE35ratesB_vs_instlumiB_50ns_final.pdf][pdf]] [[%ATTACHURLPATH%/XE35ratesB_vs_instlumiB_50ns_final.pdf][eps]] </td></tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The figure shows the rate per bunch of the missing ET trigger with a threshold of 35 !GeV (XE35) as function of the bunch position within a bunch train. Due to the interplay of in-time and out-of-time pile-up which leads to a higher level of the pedestal an increased rate at the beginning of the bunch train is observed. <br><br> <b>Right: </b> The figure shows the rate per bunch of the missing ET trigger with a threshold of 35 !GeV (XE35) as function of the position within a bunch train. The interplay of in-time and out-of-time pile-up leads to an increased level of the pedestal at the beginning of the bunch train. A pedestal correction algorithm implemented in firmware compensates for this effect and results in stable rates over the full bunch train. </td> <td align="center"> <img src="%ATTACHURLPATH%/XE35_BCID_50ns_PedCorrOff.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/XE35_BCID_50ns_PedCorrOff.png][png]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/XE35_BCID_50ns_PedCorrOn.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/XE35_BCID_50ns_PedCorrOn.png][png]] </td></tr> <td bgcolor="#eeeeee"> The figure shows the rate per bunch of the missing ET trigger with a threshold of 35 !GeV (XE35) as function of the position within a bunch train. The interplay of in-time and out-of-time pile-up leads to an increased level of the pedestal at the beginning of the bunch train. A pedestal correction algorithm implemented in firmware compensates for this effect and results in stable rates over the full bunch train. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/XE35_BCID_25ns_PedCorrOn.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/XE35_BCID_25ns_PedCorrOn.png][png]] </td></tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The Figure shows the normalised coefficients of the Finite Impulse Response Filter (FIR) for the electromagnetic layer. The coefficients are shown for a matched filter which is given by the signal pulse shape assuming white noise and no correlations between the five input ADC slices. The x-axis indicates the different η-bins for which the filters are shown. The y-axis indicates the five coefficients per η-bin and the z-axis shows the normalised filter value. <br><br> <b>Right: </b> The Figure shows the normalised coefficients of the Finite Impulse Response Filter (FIR) for the electromagnetic layer. The coefficients are shown for an autocorrelation filter for 25ns bunch spacing. The filters are given by the signal pulse shape. They take correlations between different ADC input slices from out of time pile-up into account. The x-axis indicates the different η-bins for which the filters are shown. The y-axis indicates the five coefficients per η-bin and the z-axis shows the normalised filter value. </td> <td align="center"> <img src="%ATTACHURLPATH%/EM_Layer_Matched.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/EM_Layer_Matched.prel.png][png]] [[%ATTACHURLPATH%/EM_Layer_Matched.prel.pdf][pdf]] [[%ATTACHURLPATH%/EM_Layer_Matched.prel.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/EM_Layer_AC25.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/EM_Layer_AC25.prel.png][png]] [[%ATTACHURLPATH%/EM_Layer_AC25.prel.pdf][pdf]] [[%ATTACHURLPATH%/EM_Layer_AC25.prel.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The Figure shows the normalised coefficients of the Finite Impulse Response Filter (FIR) for the hadronic layer. The coefficients are shown for a matched filter which is given by the signal pulse shape assuming white noise and no correlations between the five input ADC slices. The x-axis indicates the different η-bins for which the filters are shown. The y-axis indicates the five coefficients per η-bin and the z-axis shows the normalised filter value. <br><br> <b>Right: </b> The Figure shows the normalised coefficients of the Finite Impulse Response Filter (FIR) for the hadronic layer. The coefficients are shown for an autocorrelation filter for 25ns bunch spacing. The filters are given by the signal pulse shape. They take correlations between different ADC input slices from out of time pile-up into account. The x-axis indicates the different η-bins for which the filters are shown. The y-axis indicates the five coefficients per η-bin and the z-axis shows the normalised filter value. </td> <td align="center"> <img src="%ATTACHURLPATH%/Had_Layer_Matched.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/Had_Layer_Matched.prel.png][png]] [[%ATTACHURLPATH%/Had_Layer_Matched.prel.pdf][pdf]] [[%ATTACHURLPATH%/Had_Layer_Matched.prel.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/Had_Layer_AC25.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/Had_Layer_AC25.prel.png][png]] [[%ATTACHURLPATH%/Had_Layer_AC25.prel.pdf][pdf]] [[%ATTACHURLPATH%/Had_Layer_AC25.prel.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The figure shows the efficiency that a calorimeter pulse is identified in the correct bunch crossing as function of its offline energy by the Trigger logic. The performance of a matched filter is compared to an autocorrelation filter for the electromagnetic barrel (EMB). Since the level of out of time pile-up is rather low, the filters are very similar to each other and consequently the performance is close. <br><br> <b>Right: </b> The figure shows the efficiency that a calorimeter pulse is identified in the correct bunch crossing as function of its offline energy by the Trigger logic. The performance of a matched filter is compared to an autocorrelation filter for the inner wheel of the electromagnetic endcap. Since the level of out of time pile-up is significant, the filters are different and consequently the performance is significantly better for autocorrelation filters. </td> <td align="center"> <img src="%ATTACHURLPATH%/EMB.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/EMB.prel.png][png]] [[%ATTACHURLPATH%/EMB.prel.pdf][pdf]] [[%ATTACHURLPATH%/EMB.prel.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/EMEC_IW.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/EMEC_IW.prel.png][png]] [[%ATTACHURLPATH%/EMEC_IW.prel.pdf][pdf]] [[%ATTACHURLPATH%/EMEC_IW.prel.eps][eps]] </td></tr> <td bgcolor="#eeeeee"> The figure shows the efficiency that a calorimeter pulse is identified in the correct bunch crossing as function of its offline energy by the Trigger logic. The performance of a matched filter is compared to an autocorrelation filter for the forward calorimeter (FCAL). Since the level of out of time pile-up is significant, the filters are different and consequently the performance is significantly better for autocorrelation filters. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/FCAL1-3.4.prel.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/FCAL1-3.4.prel.png][png]] [[%ATTACHURLPATH%/FCAL1-3.4.prel.pdf][pdf]] [[%ATTACHURLPATH%/FCAL1-3.4.prel.eps][eps]] </td></tr> </tbody> </table> ---+++ Monitoring Plots approved for the ATLAS report to LHCC (Jun 3, 2015) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The figure shows the distribution of the transverse energy for em candidates identified within the cluster processor system of the Level-1 Calorimeter Trigger. The information is read out from the new Common Merger Module (CMX). The data were recorded during initial pp collisions in 2015 with protons colliding at centre of mass energy of √s=13TeV. <br><br> <b>Right: </b> The figure shows the distribution of the transverse energy for em candidates identified within the cluster processor system of the Level-1 Calorimeter Trigger which are transmitted to the Level-1 Topological Trigger. The information is read out from the new Common Merger Module (CMX). The data were recorded during initial pp collisions in 2015 with protons colliding at centre of mass energy of √s= 13TeV. </td> <td align="center"> <img src="%ATTACHURLPATH%/roi.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/roi.png][png]] [[%ATTACHURLPATH%/roi.pdf][pdf]] [[%ATTACHURLPATH%/roi.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/tob.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/tob.png][png]] [[%ATTACHURLPATH%/tob.pdf][pdf]] [[%ATTACHURLPATH%/tob.eps][eps]] </td></tr> </tbody> </table> ---+++ Monitoring Plots Update (Sep 21, 2015) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The figure shows the distribution of the transverse energy for em candidates identified within the cluster processor system of the Level-1 Calorimeter Trigger. The information is read out from the new Common Merger Module (CMX). The data were recorded during initial pp collisions in 2015 with protons colliding at centre of mass energy of √s=13TeV. <br><br> <b>Right: </b> The figure shows the distribution of the transverse energy for em candidates identified within the cluster processor system of the Level-1 Calorimeter Trigger which are transmitted to the Level-1 Topological Trigger. The information is read out from the new Common Merger Module (CMX). The data were recorded during initial pp collisions in 2015 with protons colliding at centre of mass energy of √s= 13TeV. </td> <td align="center"> <img src="%ATTACHURLPATH%/roi_276731.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/roi_276731.png][png]] [[%ATTACHURLPATH%/roi_276731.pdf][pdf]] [[%ATTACHURLPATH%/roi_276731.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/tob_276731.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/tob_276731.png][png]] [[%ATTACHURLPATH%/tob_276731.pdf][pdf]] [[%ATTACHURLPATH%/tob_276731.eps][eps]] </td></tr> </tbody> </table> ---++ !Phase-0 Upgrade Simulation Figures ---+++ Level-1 Missing E<sub>T</sub> Trigger Rates from high luminosity simulation: [[https://cds.cern.ch/record/1631717][ATL-COM-DAQ-2013-150]] (Nov 27, 2013) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> The estimated Level-1 trigger rate as a function of the missing E<sub>T</sub> (MET) threshold from 14 !TeV minimum bias Monte Carlo for a <μ> = 54 and a 25 ns bunch spacing. Shown are the operation scenarios with 2011 and 2012 noise cuts using matched FIR filters and two options for Run 2 with noise cuts optimised for a trigger tower occupancy of 0.5% using autocorrelation FIR filters with and without a pedestal correction (p. c.) which are possible with the upgraded Level-1 calorimeter trigger system. <br><br> <b>Right: </b> The estimated Level-1 trigger rate as a function of the missing E<sub>T</sub> (MET) threshold from 14 !TeV minimum bias Monte Carlo for a <μ> = 81 and a 25 ns bunch spacing. Shown are the operation scenarios with 2011 and 2012 noise cuts using matched FIR filters and two options for Run 2 with noise cuts optimised for a trigger tower occupancy of 1.0% using autocorrelation FIR filters with and without a pedestal correction (p. c.) which are possible with the upgraded Level-1 calorimeter trigger system. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig1.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig1.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig1.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig2.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig2.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-150-fig2.eps][eps]] </td></tr> </tbody> </table> ---++ !L1Calo Performance plots 2011-2013 (Run 1) ---+++ Performance of the ATLAS Level-1 Trigger: [[https://cds.cern.ch/record/1540706][ATL-COM-DAQ-2013-016]] (May 01, 2013) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> !L1Calo trigger tower timing in ns as a function of η and φ for the electromagnetic (EM) calorimeter layer. The timing is derived by fitting the trigger tower ADC distributions using either a Gauss-Landau or Landau-Landau function, after all timing corrections were applied in hardware. Precision of this method of timing determination is estimated to be around 1 ns, also lowest step available to tune timing in !L1Calo hardware (in PHOS4 chip) is 1ns. This plot shows the results using collision data from May 2012. In ideal case of perfectly timed system all Trigger Towers would give entries at zero. The plot shows that timing is within the target of +- 3ns for all Trigger Towers. <br><br> <b>Right: </b> The same for the hadronic (HAD) calorimeter layer. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig1.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig1.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig1.eps][eps]] </td> </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig2.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig2.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2013-016-fig2.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> !L1Calo trigger tower timing in ns as a function of η for the electromagnetic (EM) calorimeter layer. The timing is derived by fitting the trigger tower ADC distributions using either a Gauss-Landau or Landau-Landau function, after all timing corrections were applied in hardware. Precision of this method of timing determination is estimated to be around 1 ns, also lowest step available to tune timing in !L1Calo hardware (in PHOS4 chip) is 1ns. This plot shows the results using collision data from May 2012. In ideal case of perfectly timed system all Trigger Towers would give entries at zero. The plot shows that timing is within the target of +- 3ns. <br><br> <b>Right: </b> The same for the hadronic (HAD) calorimeter layer. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig3.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig3.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig3.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig4.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig4.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig4.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> !L1Calo timing as a function of time since start of the run for the electromagnetic (EM) calorimeter layer. The timing is an average and rms of the individual trigger tower timings which are derived using a simplified fitting method based on the ADC peak position. This plot shows results obtained offline using collision data from run 191426 (22 october 2011) compared with beam phase as measured by the Central Trigger. It is shown that during a run, timing is stable to better than 1ns level. <br><br> <b>Right: </b> The same for the hadronic (HAD) calorimeter layer. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig5.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig5.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig5.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig6.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig6.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig6.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> The figure above concerns the trigger known within ATLAS as L1_EM18VHI, where H denotes that a hadronic veto of 1GeV has been applied, V denotes that the threshold energy is variable in η and I denotes the use of electromagnetic isolation. This plot shows the efficiency turn on curve of this trigger after various levels of electromagnetic isolation have been applied. The E<sub>T</sub> denoted on the above figure relates to offline reconstructed electron E<sub>T</sub>. A subset of data identified as Z→ee candidates by standard offline reconstruction was selected from around 1 fb<sup>-1</sup> taken around the end of November and early December, 2012. The average number of interactions per bunch crossing in this data ranged from 10 to 40. The efficiency is defined with respect to electrons from these Z candidates satisfying additional selection criteria, among others: - have |η|< 2.5 <br> - are required to satisfy tight offline electron identification <br> - are in active area of calorimeter <br> - the invariant mass of the tag and probe must satisfy 80 < m < 100 !GeV <br> - are matched to L1 trigger EM object <br> - are matched to High Level Trigger electron object <br> - the tag electron must have an isolated track The error bars on the plots are statistical in nature. <br><br> <b>Right: </b> The same for the trigger known within ATLAS as L1_EM25HI </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig7.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig7.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig7.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig8.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig8.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig8.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> The figure above concerns the trigger known within ATLAS as L1_EM18VHI, where H denotes that a hadronic veto of 1GeV has been applied, V denotes that the threshold energy is variable in η and I denotes the use of electromagnetic isolation. This plot shows the efficiency at turn on plateau as a function of pile-up after various levels of electromagnetic isolation have been applied. A subset of data identified as Z→ee candidates by standard offline reconstruction was selected from around 1 fb<sup>-1</sup> taken around the end of November and early December, 2012. The average number of interactions per bunch crossing in this data ranged from 10 to 40. The electron selection criteria are the same as those used for Figure 7. The error bars on the plots are statistical in nature. <br><br> <b>Right: </b> The same for the trigger known within ATLAS as L1_EM25HI. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig9.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig9.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig9.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig10.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig10.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig10.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> The figure above investigates the triggers which, in ATLAS trigger nomenclature are notated as L1_16H, L1_EM18VH and L1_25H. Within this, the `H' in the name of these triggers denotes that they have already had a hadronic veto of ≤ 1 !GeV applied and the letter `V' denotes that the threshold energy is variable in η. This plot shows the effectiveness of a veto isolation cut on the rates of the level 1 calorimeter triggers L1_EM16H, L1_EM18VH and L1_EM25H. The x-axis shows the relative rate reduction achieved by applying the extra isolation requirements and the y-axis is the relative reduction in rate. The labels denote isolation value was used for the corresponding trigger. Efficiency values are calculated using integrals between 30 and 100 !GeV A subset of data identified as Z→ee candidates by standard offline reconstruction was selected from around 1 fb<sup>-1</sup> taken around the end of November and early December, 2012. The average number of interactions per bunch crossing in this data ranged from 10 to 40. The cut on the energy of the probe electrons is set at 30 !GeV when calculating the efficiencies for this plot. The electron selection criteria are the same as those used for Figure 7. The error bars are not included in this plot as they are viewed to be negligible. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig11.png" alt=".png" width="500" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig11.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig11.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> This plot shows the relative effectiveness of a fractional isolation cut on the rates of the level 1 calorimeter trigger L1_EM16 which is an electron trigger with a threshold of 16 !GeV. The electromagnetic isolation considered here represents the total energy found in a ring of em trigger towers surrounding the area which caused the trigger. The three data series plotted are the trigger with an isolation veto as possible in the current firmware, the trigger with a fractional isolation where the isolation allowed is a fraction of the level 1 electron energy and the trigger with both the fractional isolation and a hadronic veto of ≤ 1 !GeV. The x-axis shows the relative rate achieved by applying the extra isolation requirements and the y-axis is the relative efficiency. The labels denote which fraction (F) or isolation (I) was used for the corresponding trigger. Efficiency values are calculated using integrals between 25 and 100 !GeV. The electron selection criteria are the same as those used for Figure 7. The statistical errors for the efficiencies are not shown as they are small compared to the points and systematic errors have not been considered at this point. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig12.png" alt=".png" width="500" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig12.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig12.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> This plot shows !L1Calo receiver gains applied to signals in electromagnetic layer, as used at the end of 2012/13 data taking period. Receiver gains are where !L1Calo energy calibration is applied, ensuring correct energy scale on trigger tower level. The gains are not uniform, because cables, carrying analog input signals from !ATLAS front-end to !L1Calo have different length and attenuation. Another source of non-uniformities are differences in electronics response, corrections for dead or noisy calorimeter cells and corrections for reduced high voltage. <br><br> <b>Right: </b> The same for !L1Calo receiver gains applied to signals in hadronic LAr calorimeter. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig13.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig13.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig13.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig14.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig14.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig14.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> This plot shows !L1Calo receiver gains applied to signals coming from Tile calorimeter, as used at the end of 2012/13 data taking period. Receiver gains are where !L1Calo energy calibration is applied, ensuring correct energy scale on trigger tower level. The gains are not uniform, because cables, carrying analog input signals from !ATLAS front-end to !L1Calo have different length and attenuation. Another source of non-uniformities are differences in electronics response and corrections for reduced response in drawers in emergency mode. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig15.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig15.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig15.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> This plot shows relative change in !L1Calo receiver gains, used by !L1Calo to compensate for reduction of high voltage in Liquid Argon Presampler. The change happened on 28/9/2012 when HV was reduced to 1200 V. New receiver gains were calculated with offline script based on HV corrections for individual LAr cells and EM shower profile determined from analysis of collision data. Gains were updated for most of EM barrel, although for some areas the update was not necessary, as these were on reduced HV already. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig16.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig16.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig16.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> Fractional difference between !L1Calo transverse energy and offline transverse energy as a function of the offline transverse energy. The !L1Calo energy is calculated using two different methods; the energy based on the ADC peak sample and the energy based on the result of the look-up-table (LUT). This plot shows the distributions for the Liquid Argon electromagnetic barrel (EMB, -1.5< η < 1.5) calorimeter using 2012 collision data, recorded on Oct. 21st. EMB-A and EMB-C represent different sides of the barrel, in terms of the pseudorapidity (A: η>0, C:η<0). The errors on the y-axis represent statistical errors, while the errors on the x-axis show the bin width. For most calorimeter partitions statistical errors are negligible. <br><br> <b>Right: </b> The same quantity for the Tile hadronic calorimeter (TILE, -1.5 < η < 1.5) using 2012 collision data, recorded on Oct. 21st. TILE-A and TILE-C represent different sides of the barrel, in terms of the pseudorapidity (A: η>0, C:η<0). </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig17.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig17.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig17.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig18.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig18.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig18.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> Fractional difference between !L1Calo transverse energy and offline transverse energy as a function of the offline transverse energy. The !L1Calo energy is calculated using the energy based on the ADC peak sample. This plot shows the distributions for all electromagnetic calorimeter partitions using 2012 collision data, recorded on Oct. 21st. The partition names represent different parts of the detector in terms of the pseudorapidity (EMB/EMEC2/EMEC1/FCAL1: |η|< 1.5 /<1.8/<3.2/<4.9). The first bin for the FCAL1 (E<sub>T</sub> < 7 !GeV) is subject to large pile-up effects and is therefore not shown. The errors on the y-axis represent statistical errors, while the errors on the x-axis represent the bin width. For most calorimeter partitions statistical errors are negligible. <br><br> <b>Right: </b> The same quantity for all hadronic calorimeter partitions. The partition names represent different parts of the detector in terms of the pseudorapidity (TILE/HEC/FCAL23: |η| < 1.5/<3.2/<4.9). There was not enough data at high E<sub>T</sub> for the very forward regions (FCAL23), which is why those bins are empty. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig19.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig19.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig19.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig20.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig20.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig20.eps][eps]] </td> </tr> <td bgcolor="#eeeeee"> <b>Left: </b> Ratio between offline transverse energy and !L1Calo transverse energy as a function of η. The !L1Calo energy is calculated using the energy based on the ADC peak sample. This plot shows the distribution for electromagnetic calorimeter layer using 2012 collision data, recorded on Oct. 21st. The errors on the y-axis represent statistical errors, while the errors on the x-axis represent the bin width. For most calorimeter partitions statistical errors are negligible. <br><br> <b>Righ: </b> The same quantity for hadronic calorimeter layer. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig21.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig21.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig21.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig22.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig22.png][png]] [[%ATTACHURLPATH%/ATL_COM_DAQ-2013-016-fig22.eps][eps]] </td> </tr> </tbody></table> ---++ !L1Calo Trigger rates 2011-2012 ---+++ Performance of the ATLAS Level-1 Trigger: [[https://cdsweb.cern.ch/record/1445272][ATL-COM-DAQ-2012-033]] (May 02, 2012) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> Level-1 Trigger cross-sections (rate/luminosity) for a selection of !L1Calo-based trigger items. The left side of the figure corresponds to measurements from two 7TeV runs with 2011 nominal per-bunch luminosities, and colliding bunches delivered in bunch trains with 50ns spacing. The right side of the figure corresponds to a special high-luminosity 7TeV run with no bunch trains. The middle of the figure corresponds to an 8TeV run with 2012 nominal per-bunch luminosities and 50ns bunch trains. The falls in rate for XE50 and FJ75 triggers between 2011 and 2012 runs are due to trigger noise-cut increases in the forward regions of !L1Calo. All other rate changes (increases) are due to the increased centre-of-mass energy.EM16 (EM30) is an electron-photon trigger with a threshold at 16 (30) !GeV. !EM16VH is an electron-photon trigger with an hadronic layer energy veto and varied thresholds across the calorimeter, with typically 16 !GeV thresholds. TAU15 is an hadronically-decaying tau trigger with threshold at 15 !GeV. XE50 is a trigger for missing ET above 50 !GeV at the EM scale. XE50_BGRP7 is an XE50 trigger with a veto on the first 3 bunches of a bunch train. J75 is a trigger for a central jet (|η|<3.2) with ET above 75 !GeV. FJ75 is a trigger for a jet in the forward region (|η|>3.2) with ET above 75 !GeV. 4J10 is a trigger for four central jets with ET above 10 !GeV. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig13a.png" alt=".png" width="500" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig13a.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig13a.eps][eps]] <br>[[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig13b.png][png (without fixed-rate lines)]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig13b.eps][eps (without fixed-rate lines)]] </td> </tr> </tbody></table> ---++ !L1Calo Forward Noise Cut Studies 2011/2012 ---+++ Performance of the ATLAS Level-1 Trigger: [[https://cdsweb.cern.ch/record/1445272][ATL-COM-DAQ-2012-033]] (May 02, 2012) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Left: </b> Distribution of !L1Calo Preprocessor ADC counts for four different regions of the EM FCAL calorimeter. The four bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.2 (Bin 1), 3.2-3.5 (Bin 2), 3.5-4.2 (Bin 3), 4.2-4.9 (Bin 4). Zero-bias events from a single run were used for these distributions. <br><br> <b>Right: </b> Standard deviation (from RMS of distribution) of the !L1Calo Preprocessor ADC distributions of four regions of the EM FCAL calorimeter, measured over a range of luminosities that have been quantified in terms of the interactions per bunch crossing. The four bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.2 (Bin 1), 3.2-3.5 (Bin 2), 3.5-4.2 (Bin 3), 4.2-4.9 (Bin 4). Zero-bias events from a single run were used for these distributions. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig01.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig01.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig01.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig02.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig02.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig02.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> Distribution of !L1Calo Preprocessor ADC counts for two different regions of the Hadronic FCAL2 calorimeter. The two bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.5 (Bin 1), 3.5-4.9 (Bin 2). Zero-bias events from a single run were used for these distributions. <br><br> <b>Right: </b> Standard deviations (from RMS of distribution) of the !L1Calo Preprocessor ADC distributions of two regions of the Hadronic FCAL2 calorimeter, measured over a range of luminosities that have been quantified in terms of the interactions per bunch crossing. The two bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.5 (Bin 1), 3.5-4.9 (Bin 2). Zero-bias events from a single run were used for these distributions. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig03.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig03.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig03.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig04.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig04.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig04.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> Distribution of !L1Calo Preprocessor ADC counts for two different regions of the Hadronic FCAL3 calorimeter. The two bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.5 (Bin 1), 3.5-4.9 (Bin 2). Zero-bias events from a single run were used for these distributions. <br><br> <b>Right: </b> Standard deviations (from RMS of distribution) of the !L1Calo Preprocessor ADC distributions of two regions of the Hadronic FCAL3 calorimeter, measured over a range of luminosities that have been quantified in terms of the interactions per bunch crossing. The two bins represent divisions in |η| of the trigger towers, nominally: 3.1-3.5 (Bin 1), 3.5-4.9 (Bin 2). Zero-bias events from a single run were used for these distributions. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig05.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig05.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig05.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig06.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig06.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig06.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Left: </b> Distribution of !L1Calo Preprocessor ADC counts for four different regions of the EM !EndCap Inner Wheel calorimeter. The four bins represent divisions in |η| of the trigger towers, nominally: 2.5-2.7 (Bin 1), 2.7-2.9 (Bin 2), 2.9-3.1 (Bin 3), 3.1-3.2 (Bin 4). Zero-bias events from a single run were used for these distributions. <br><br> <b>Right: </b> Standard deviations (from RMS of distribution) of the !L1Calo Preprocessor ADC distributions of four regions of the EM !EndCap Inner Wheel calorimeter, measured over a range of luminosities that have been quantified in terms of the interactions per bunch crossing. The four bins represent divisions in |η| of the trigger towers, nominally: 2.5-2.7 (Bin 1), 2.7-2.9 (Bin 2), 2.9-3.1 (Bin 3), 3.1-3.2(Bin 4). Zero-bias events from a single run were used for these distributions. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig07.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig07.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig07.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig08.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig08.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig08.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> L1_XE50 (Missing ET Trigger) efficiency as a function of the offline topological cluster-based missing ET, for a sample of candidate W->e nu events (single electron with ET above 25 !GeV, passing tight identification and other quality requirements, with the candidate W transverse mass greater than 40 !GeV). Four different choices of trigger tower noise cuts were simulated offline, one with Forward Calorimeter (FCAL) noise cuts optimized to conditions with an average of 15 interactions per crossing, one with FCAL noise cuts optimized to 20 average interactions per crossing, one with both FCAL and Electromagnetic !EndCap Inner Wheel (EMEC-IW) noise cuts optimized for 20 average interactions per crossing, and one with FCAL and EMEC-IW noise cuts optimized to 25 interactions per crossing. Data was taken from a single 2012 run, which had a peak luminosity of 23.1 average collisions per filled bunch crossing. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig11.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig11.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2012-033-fig11.eps][eps]] </td> </tr> </tbody> </table> ---+++ Predicted Level-1 Missing Energy rates with pile-up noise suppression: [[https://cdsweb.cern.ch/record/1403077][ATL-COM-DAQ-2011-152]] (December 6, 2011) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>FCAL/EMEC inner noise cuts and XE trigger</b><br> Level-1 Missing Et (MET) rates as a function of threshold for several pile-up noise cut scenarios. The rates are estimated by applying noise cuts to ZeroBias events in run 191426 at a luminosity around 3.2x1033 and mu of 15. The 2011 configuration corresponds to noise cuts of approximately 1 !GeV in all trigger towers. The loose forward noise cut applies cuts of 6.5, 5.5 and 2.5 !GeV in the first FCAL layer and 4.5 in the second layer at |η| > 3.5. The tighter noise cuts raise these by 1 !GeV, and also raise the noise cuts in all other towers beyond |η| = 2.5 by 0.5 !GeV. The final case removes FCAL entirely from the Missing Et calculation. At this luminosity, the bulk of the fake MET rate reduction is achieved with the loose cuts. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-152-fig01.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-152-fig01.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-152-fig01.eps][eps]] </td> </tr> </tbody> </table> ---++ !L1Calo Calibration Figures 2011 ---+++ Calibration and Performance of the ATLAS Level-1 Calorimeter Trigger: [[https://cdsweb.cern.ch/record/1353554][ATL-COM-DAQ-2011-037]] (June 1, 2011) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Timing monitoring 2010/11</b><br> Mean !L1Calo timing as function of date for the electromagnetic (EM) and hadronic (Had) calorimeter partitions. The mean timing is an average of the individual trigger tower timings which are derived using a simplified fitting method based on the ADC peak position. The vertical lines indicate adjustments in the global CTP clock phase which synchronize the clock to the LHC radio-frequency system. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig01.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig01.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig01.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig02.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig02.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig02.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Timing status March 2011</b><br> !L1Calo trigger tower timing in ns as function of eta and phi for the electromagnetic (EM) and hadronic (HAD) calorimeter layer. The timing is derived by fitting the trigger tower ADC distributions using either a Gauss-Landau or Landau-Landau function. This plot shows the results using collision data from the initial 2011 running period. White bins have no measurement due to lack of statistics. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig03.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig03.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig03.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig05.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig05.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig05.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Timing status April 2011</b><br> !L1Calo trigger tower timing in ns as function of eta and phi for the electromagnetic (EM) and hadronic (HAD) calorimeter layer. The timing is derived by fitting the trigger tower ADC distributions using either a Gauss-Landau or Landau-Landau function. This plot shows the results using collision data after applying corrections to the !L1Calo timing delays derived from figure 3 or 5, respectively. White bins have no measurement due to lack of statistics. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig04.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig04.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig04.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig06.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig06.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig06.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Energy correlation (Beginning of 2011)</b><br> !L1Calo trigger tower transverse energy versus offline transverse energy. The offline transverse energy is derived by summing the individual calorimeter cells associated to a tower. These plots show the results for the electromagnetic (EM) and hadronic (HAD) calorimeter using 2011 collisions data. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig07.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig07.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig07.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig08.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig08.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig08.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Energy resolution (2010)</b><br> Fractional difference between !L1Calo transverse energy and offline transverse energy as a function of the offline transverse energy. The !L1Calo energy is calculated using two different methods; the energy based on the ADC peak sample and the energy based on the result of the look-up-table (LUT). These plots show the distributions for the electromagnetic barrel (EMB) and the Tile hadronic calorimeter using 2010 collision data. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig09.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig09.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig09.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig11.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig11.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig11.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Energy resolution (Early 2011)</b><br> Fractional difference between !L1Calo transverse energy and offline transverse energy as a function of the offline transverse energy. The !L1Calo energy is calculated using two different methods; the energy based on the ADC peak sample and the energy based on the result of the look-up-table (LUT). These plots show the distributions for the electromagnetic barrel (EMB) and the Tile hadronic calorimeter using 2011 collision data which include improvements in the LUT calculation. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig10.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig10.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig10.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig12.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig12.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig12.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Correlation of FIR output and ADC peak sample</b><br> The output of the finite-impulse-response (FIR) filter before drop bit truncation as a function of the peak ADC sample for an example trigger tower from the electromagnetic (EM) layer. A linear fit is applied to distribution for peak ADC values above 50, well above the pedestal value of about 32 counts. The fitted gradient is used to derive look-up-table (LUT) slopes which determine the energy calibration. The plot shows the results from the analysis of 2010 collision data. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig13.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig13.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig13.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>LUT calibration (2010)</b><br> The fitted gradients as a function of eta and phi for the electromagnetic (EM) and hadronic (Had.) layer. The results are derived from linear fits to the distributions of the finite-impulse-response (FIR) filter output as a function of the peak ADC sample as shown in figure 13. This plot shows the result from the analysis of 2010 collision data. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig14.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig14.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig14.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig15.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig15.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig15.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Normalised pulse shape (2010)</b><br> The pedestal subtracted and normalized ADC pulse shape for an example !L1Calo trigger tower as derived from the analysis of 2010 collision data. </td> <td align="center" colspan="2"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig16.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig16.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig16.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>FIR calibration (2010)</b><br> The sum (S_1+S_3) as a function of eta and phi for the electromagnetic (EM) and hadronic (Had.) calorimeter layer. The value S i is the normalized pulse height of the i-th ADC sample as illustrated in figure 16. This plot shows the result from the analysis of 2010 collision data. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig17.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig17.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig17.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig18.png" alt=".png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig18.png][png]] [[%ATTACHURLPATH%/ATL-COM-DAQ-2011-037-fig18.eps][eps]] </td> </tr> </tbody> </table> ---++ !L1Calo Calibration Figures 2010 ---+++ ATLAS Level-1 Calorimeter Trigger: Timing Calibration with 2009 LHC Beam Splashes: [[https://cdsweb.cern.ch/record/1262858][ATL-DAQ-PUB-2010-001]] (April 30, 2010) <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"> <b>Figure 1:</b> Figure 1(a) is a standard pulse as it is read out of the !L1Calo system and Figure 1(b) is a reconstructed pulse with nanosecond time resolution which is derived from special pulser runs as described in the text. Both signals are fit with the hybrid Landau/Gaussian fit function described by Equation 1. The signals were taken from a Liquid Argon calibration run. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01a.png" alt="ATL-DAQ-PUB-2010-001-fig_01a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01b.png" alt="ATL-DAQ-PUB-2010-001-fig_01b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_01b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 2:</b> This is an eta-phi plot of the peak time location with ns precision plotted on the z-axis. The peak times (t0) are measured by fitting each trigger tower signal with a Landau/Gaussian hybrid function. The timing reference was taken as 175 ns from Figure 1(a). The electromagnetic layer is shown in 2(a) with beam-1 approaching in the −h direction using event number 2166. The hadronic layer is shown in 2(b) with beam-2 approaching in the +h direction using event number 2666. Both events are taken from Run 140370. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02a.png" alt="ATL-DAQ-PUB-2010-001-fig_02a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02b.png" alt="ATL-DAQ-PUB-2010-001-fig_02b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_02b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 3:</b> An eta-projection of the peak time location distribution in Figure 2 is shown. The electromagnetic layer is shown in 3(a) with beam-1 approaching in the −eta direction using event number 2166. The hadronic layer is shown in 3(b) with beam-2 approaching in the +eta direction using event number 2666. Both events are taken from Run 140370. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03a.png" alt="ATL-DAQ-PUB-2010-001-fig_03a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03b.png" alt="ATL-DAQ-PUB-2010-001-fig_03b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_03b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 5:</b> The approximate time of flight from collision vertex to detector layer as a function of eta. The electromagnetic layer is shown in 5(a) and the hadronic layer in 5(b). </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05a.png" alt="ATL-DAQ-PUB-2010-001-fig_05a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05b.png" alt="ATL-DAQ-PUB-2010-001-fig_05b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_05b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 6:</b> The time of flight from collimator to detector layer as a function of eta is shown using eta = 0 as a reference. The time of flight from the interaction point to the detector, shown in Figure 5, is subtracted to get the total time of flight correction seen in Figure 7. The electromagnetic layer is shown in 6(a). The hadronic layer is shown in 6(b). The beam-1 (−eta) trajectory is used here with reflection across the eta = 0 axis representing the beam-2 trajectory. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06a.png" alt="ATL-DAQ-PUB-2010-001-fig_06a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06b.png" alt="ATL-DAQ-PUB-2010-001-fig_06b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_06b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 7:</b> This is the total time of flight correction as a function of eta. The electromagnetic layer is shown in 7(a). The hadronic layer is shown in 7(b). The beam-1 (−eta) trajectory is used here with reflection across the eta = 0 axis representing the beam-2 trajectory. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07a.png" alt="ATL-DAQ-PUB-2010-001-fig_07a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07b.png" alt="ATL-DAQ-PUB-2010-001-fig_07b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_07b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 8:</b> The corrected peak time location in nanoseconds for both calorimeter layers. The electromagnetic layer is shown in 8(a) with beam-1 (−eta trajectory) using event number 2166. The hadronic layer is shown in 8(b) with beam-2 (+eta trajectory) using event number 2666. Both events taken from Run 140370. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08a.png" alt="ATL-DAQ-PUB-2010-001-fig_08a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08b.png" alt="ATL-DAQ-PUB-2010-001-fig_08b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_08b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 9:</b> The mean of the eta bins in Figure 8. The distributions would be flat for perfect timing, however, partition dependent offsets must be corrected. The electromagnetic layer is shown in 9(a) with beam 1 approaching in the −eta direction using event number 2166. The hadronic layer is shown in 9(b) with beam 2 approaching in the +eta direction using event number 2666. Both events taken from Run 140370. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09a.png" alt="ATL-DAQ-PUB-2010-001-fig_09a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09b.png" alt="ATL-DAQ-PUB-2010-001-fig_09b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_09b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 10:</b> The peak position (t0), determined using Equation 1, as a function of the ATLAS event number. Figure 10(a) shows a non-uniform response to beam-1 and beam-2 events (PPM channel located in hadronic end cap), which was seen in a small number of channels. Figure 10(b) shows a typical TT with the expected uniform response to beam-1 and beam-2 splash events (PPM channel located in electromagnetic barrel). </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10a.png" alt="ATL-DAQ-PUB-2010-001-fig_10a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10b.png" alt="ATL-DAQ-PUB-2010-001-fig_10b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_10b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 11:</b> The mean correction to peak time location in nanoseconds for both calorimeter layers. The electromagnetic layer is shown in 11(a). The hadronic layer is shown in 11(b). Data taken from splash events in Run 140370. </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11a.png" alt="ATL-DAQ-PUB-2010-001-fig_11a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11b.png" alt="ATL-DAQ-PUB-2010-001-fig_11b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_11b.eps][eps]] </td> </tr> <tr><td bgcolor="#eeeeee"> <b>Figure 12:</b> The final corrected timing delays for each TT in nanoseconds for both calorimeter layers. The electromagnetic layer is shown in 12(a). The hadronic layer is shown in 12(b). </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12a.png" alt="ATL-DAQ-PUB-2010-001-fig_12a.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12a.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12a.eps][eps]] </td> <td align="center"> <img src="%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12b.png" alt="ATL-DAQ-PUB-2010-001-fig_12b.png" width="300" src=""/><br> [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12b.png][png]] [[%ATTACHURLPATH%/ATL-DAQ-PUB-2010-001-fig_12b.eps][eps]] </td> </tr> </tbody> </table> ---+++ !L1Calo calibration figures not assigned to a CDS note <table class="twikiTable" width="100%" bgcolor=#f5f5fa border=1 cellpadding=10 cellspacing=10> <colgroup><col width="60%"></colgroup> <tbody> <tr><td bgcolor="#eeeeee"><b>Energy ramp for one particular Trigger Tower from the Tile system</b><br> Five different energies have been pulsed using the Tile charge injection system. The transverse energy measured in the Tile calorimeter is plotted vs. the energy measured by !L1Calo. A linear fit is overlayed with the slope of the line corresponding to the calibration constant derived by this method.</td> <td align="center"> <img width="300" src="%ATTACHURL%/ramp_tile.png"/><br> [[%ATTACHURL%/ramp_tile.png][png]] [[%ATTACHURL%/ramp_tile.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"><b>Energy ramp for one particular Trigger Tower from the LAr system</b><br> Six different energies have been pulsed using the LAr pulser system. The transverse energy measured in the LAr calorimeter is plotted vs. the energy measured by !L1Calo. A linear fit is overlayed with the slope of the line corresponding to the calibration constant derived by this method.</td> <td align="center"> <img width="300" src="%ATTACHURL%/ramp_emb.png"/><br> [[%ATTACHURL%/ramp_emb.png][png]] [[%ATTACHURL%/ramp_emb.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"><b>Tile energy correlation plot</b><br> Energy correlation plot from 7 TeV data where the transverse energy measured in the Tile Calorimeter is shown vs. the transverse energy measured by !L1Calo. The transverse energy of all cells which correspond to a Trigger Tower is summed up and compared to the corresponding L1 Trigger Tower. The plot shows a very good correlation with only a very few outliers.</td> <td align="center"> <img width="300" src="%ATTACHURL%/Scatter_TILE.png"/><br> [[%ATTACHURL%/Scatter_TILE.png][png]] [[%ATTACHURL%/Scatter_TILE.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"><b>LAr energy correlation plot</b><br> Energy correlation plot from 7 TeV data where the transverse energy measured in the LAr Calorimeter is shown vs. the transverse energy measured by !L1Calo. The transverse energy of all cells which correspond to a Trigger Tower is summed up and compared to the corresponding L1 Trigger Tower. The plot shows a very good correlation.</td> <td align="center"> <img width="300" src="%ATTACHURL%/Scatter_EMB.png"/><br> [[%ATTACHURL%/Scatter_EMB.png][png]] [[%ATTACHURL%/Scatter_EMB.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"><b>Correlation between peak ADC input and LUT output</b><br> !L1Calo digitises trigger tower signals with a scale of 250 !MeV per ADC. The digital pulses are passed through a filter to improve energy resolution, noise rejection and bunch crossing identification. The filter output is then passed into a look-up table (LUT) which performs pedestal subtraction, noise cuts, and the final ET calibration. The output from the LUT has a scale of 1 !GeV/count. The initial LUT values were generated based on measurements of calibration pulses. <br /> The correlation between peak ADC input and LUT output for a single trigger tower is plotted. The correlation between peak ADC input and the LUT output for a single trigger tower in collision data is plotted. The expected gradient for a perfectly calibrated tower is 1/4 (250 !MeV / 1 !GeV). A straight line was fitted to the data and a gradient of 0.24 LUT/ADC was extracted. This shows that calibration and collision pulse shapes are comparable, and the initial calibration is already close to the final optimum LUT values required for collisions.</td> <td align="center"> <img width="300" src="%ATTACHURL%/L1Calo_lutslope.png"/><br> [[%ATTACHURL%/L1Calo_lutslope.png][png]] [[%ATTACHURL%/L1Calo_lutslope.eps][eps]] </td></tr> <tr><td bgcolor="#eeeeee"><b>LUT calibration</b><br> !L1Calo digitises trigger tower signals with a scale of 250 !MeV per ADC. The digital pulses are passed through a filter to improve energy resolution, noise rejection and bunch crossing identification. The filter output is then passed into a look-up table (LUT) which performs pedestal subtraction, noise cuts, and the final ET calibration. The output from the LUT has a scale of 1 !GeV/count. The initial LUT values were generated based on measurements of calibration pulses. <br /> Straight lines were fitted to ADC peak vs LUT distributions for each trigger tower and the gradients extracted. The expected gradient for a perfectly calibrated tower is 1/4 (250 !MeV / 1 !GeV). The distribution of fit gradients for towers in the LAr Barrel A-side show that the initial LUT calibration worked well, as most towers are already close to the optimum value. Future calibration will be based on offline reconstructed physics objects.</td> <td align="center"> <img width="300" src="%ATTACHURL%/L1Calo_lar_barrel_lutslopes.png"/><br> [[%ATTACHURL%/L1Calo_lar_barrel_lutslopes.png][png]] [[%ATTACHURL%/L1Calo_lar_barrel_lutslopes.eps][eps]] </td></tr> </tbody> </table> ----- *Major updates*:%BR% -- Main.MartinWessels - 24-Jun-2011 -- Main.JoergStelzer - 13-Jun-2011 %RESPONSIBLE% %REVINFO{"$wikiusername" rev="1.1"}% %BR% %SUBJECT% public %BR% %STOPINCLUDE%
Attachments
Attachments
Topic attachments
I
Attachment
History
Action
Size
Date
Who
Comment
eps
ATL-COM-DAQ-2011-037-fig01.eps
r1
manage
12.7 K
2011-06-21 - 14:08
MartinWessels
png
ATL-COM-DAQ-2011-037-fig01.png
r1
manage
31.2 K
2011-06-21 - 14:09
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig02.eps
r1
manage
15.4 K
2011-06-21 - 17:14
MartinWessels
png
ATL-COM-DAQ-2011-037-fig02.png
r1
manage
33.0 K
2011-06-21 - 17:14
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig03.eps
r1
manage
121.0 K
2011-06-21 - 17:14
MartinWessels
png
ATL-COM-DAQ-2011-037-fig03.png
r1
manage
50.0 K
2011-06-21 - 17:15
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig04.eps
r1
manage
120.2 K
2011-06-21 - 17:15
MartinWessels
png
ATL-COM-DAQ-2011-037-fig04.png
r1
manage
48.8 K
2011-06-21 - 17:15
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig05.eps
r1
manage
110.7 K
2011-06-21 - 17:15
MartinWessels
png
ATL-COM-DAQ-2011-037-fig05.png
r1
manage
46.5 K
2011-06-21 - 17:15
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig06.eps
r1
manage
111.9 K
2011-06-21 - 17:16
MartinWessels
png
ATL-COM-DAQ-2011-037-fig06.png
r1
manage
46.9 K
2011-06-21 - 17:16
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig07.eps
r1
manage
21.4 K
2011-06-21 - 17:16
MartinWessels
png
ATL-COM-DAQ-2011-037-fig07.png
r1
manage
23.7 K
2011-06-21 - 17:16
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig08.eps
r1
manage
13.8 K
2011-06-21 - 17:17
MartinWessels
png
ATL-COM-DAQ-2011-037-fig08.png
r1
manage
20.8 K
2011-06-21 - 17:18
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig09.eps
r1
manage
13.5 K
2011-06-21 - 17:18
MartinWessels
png
ATL-COM-DAQ-2011-037-fig09.png
r1
manage
28.1 K
2011-06-21 - 17:19
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig10.eps
r1
manage
13.6 K
2011-06-21 - 17:20
MartinWessels
png
ATL-COM-DAQ-2011-037-fig10.png
r1
manage
28.5 K
2011-06-21 - 17:20
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig11.eps
r1
manage
13.2 K
2011-06-21 - 17:21
MartinWessels
png
ATL-COM-DAQ-2011-037-fig11.png
r1
manage
27.4 K
2011-06-21 - 17:21
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig12.eps
r1
manage
14.5 K
2011-06-21 - 17:21
MartinWessels
png
ATL-COM-DAQ-2011-037-fig12.png
r1
manage
27.4 K
2011-06-21 - 17:21
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig13.eps
r1
manage
27.6 K
2011-06-21 - 17:22
MartinWessels
png
ATL-COM-DAQ-2011-037-fig13.png
r1
manage
27.1 K
2011-06-21 - 17:22
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig14.eps
r1
manage
106.1 K
2011-06-21 - 17:22
MartinWessels
png
ATL-COM-DAQ-2011-037-fig14.png
r1
manage
37.5 K
2011-06-21 - 17:22
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig15.eps
r1
manage
95.3 K
2011-06-21 - 17:23
MartinWessels
png
ATL-COM-DAQ-2011-037-fig15.png
r1
manage
40.6 K
2011-06-21 - 17:23
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig16.eps
r1
manage
6.0 K
2011-06-21 - 17:23
MartinWessels
png
ATL-COM-DAQ-2011-037-fig16.png
r1
manage
12.9 K
2011-06-21 - 17:23
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig17.eps
r1
manage
111.7 K
2011-06-21 - 17:24
MartinWessels
png
ATL-COM-DAQ-2011-037-fig17.png
r1
manage
41.9 K
2011-06-21 - 17:24
MartinWessels
eps
ATL-COM-DAQ-2011-037-fig18.eps
r1
manage
107.9 K
2011-06-21 - 17:25
MartinWessels
png
ATL-COM-DAQ-2011-037-fig18.png
r1
manage
43.3 K
2011-06-21 - 17:25
MartinWessels
eps
ATL-COM-DAQ-2011-152-fig01.eps
r1
manage
17.4 K
2011-12-12 - 12:46
SteveHillier
MET/FCAL eps plots
png
ATL-COM-DAQ-2011-152-fig01.png
r1
manage
36.8 K
2011-12-12 - 12:46
SteveHillier
MET/FCAL png plot
eps
ATL-COM-DAQ-2012-033-fig01.eps
r1
manage
24.2 K
2012-05-14 - 17:07
WillButtinger
png
ATL-COM-DAQ-2012-033-fig01.png
r1
manage
21.1 K
2012-05-14 - 17:07
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig02.eps
r1
manage
13.8 K
2012-05-14 - 17:07
WillButtinger
png
ATL-COM-DAQ-2012-033-fig02.png
r1
manage
17.9 K
2012-05-14 - 17:07
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig03.eps
r1
manage
18.0 K
2012-05-14 - 17:07
WillButtinger
png
ATL-COM-DAQ-2012-033-fig03.png
r1
manage
18.1 K
2012-05-14 - 17:07
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig04.eps
r1
manage
11.6 K
2012-05-14 - 17:07
WillButtinger
png
ATL-COM-DAQ-2012-033-fig04.png
r1
manage
16.9 K
2012-05-14 - 17:07
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig05.eps
r1
manage
15.8 K
2012-05-14 - 17:07
WillButtinger
png
ATL-COM-DAQ-2012-033-fig05.png
r1
manage
17.1 K
2012-05-14 - 17:07
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig06.eps
r1
manage
11.1 K
2012-05-14 - 17:09
WillButtinger
png
ATL-COM-DAQ-2012-033-fig06.png
r1
manage
16.5 K
2012-05-14 - 17:09
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig07.eps
r1
manage
26.1 K
2012-05-14 - 17:09
WillButtinger
png
ATL-COM-DAQ-2012-033-fig07.png
r1
manage
22.1 K
2012-05-14 - 17:09
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig08.eps
r1
manage
13.5 K
2012-05-14 - 17:09
WillButtinger
png
ATL-COM-DAQ-2012-033-fig08.png
r1
manage
18.6 K
2012-05-14 - 17:09
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig11.eps
r1
manage
20.3 K
2012-05-14 - 17:09
WillButtinger
png
ATL-COM-DAQ-2012-033-fig11.png
r1
manage
17.5 K
2012-05-14 - 17:09
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig13a.eps
r1
manage
54.2 K
2012-05-14 - 17:09
WillButtinger
png
ATL-COM-DAQ-2012-033-fig13a.png
r1
manage
22.7 K
2012-05-14 - 17:09
WillButtinger
eps
ATL-COM-DAQ-2012-033-fig13b.eps
r1
manage
47.9 K
2012-05-14 - 17:10
WillButtinger
png
ATL-COM-DAQ-2012-033-fig13b.png
r1
manage
18.7 K
2012-05-14 - 17:10
WillButtinger
eps
ATL-COM-DAQ-2013-016-fig1.eps
r1
manage
124.4 K
2013-05-14 - 17:54
JurajBracinik
png
ATL-COM-DAQ-2013-016-fig1.png
r1
manage
20.3 K
2013-05-14 - 17:54
JurajBracinik
eps
ATL-COM-DAQ-2013-016-fig2.eps
r1
manage
120.4 K
2013-05-14 - 18:20
JurajBracinik
png
ATL-COM-DAQ-2013-016-fig2.png
r1
manage
20.6 K
2013-05-14 - 18:20
JurajBracinik
eps
ATL-COM-DAQ-2013-150-fig1.eps
r1
manage
11.6 K
2014-06-30 - 16:53
AndrewDaniells
png
ATL-COM-DAQ-2013-150-fig1.png
r1
manage
22.8 K
2014-06-30 - 16:53
AndrewDaniells
eps
ATL-COM-DAQ-2013-150-fig2.eps
r1
manage
11.9 K
2014-06-30 - 16:53
AndrewDaniells
png
ATL-COM-DAQ-2013-150-fig2.png
r1
manage
22.7 K
2014-06-30 - 16:53
AndrewDaniells
eps
ATL-COM-DAQ-2016-143-fig1.eps
r1
manage
20.7 K
2016-09-20 - 14:21
DavideGerbaudo
L1Topo
plots for ATL-COM-DAQ-2016-143
png
ATL-COM-DAQ-2016-143-fig1.png
r1
manage
20.1 K
2016-09-20 - 14:21
DavideGerbaudo
L1Topo
plots for ATL-COM-DAQ-2016-143
eps
ATL-COM-DAQ-2016-143-fig2.eps
r1
manage
15.0 K
2016-09-20 - 14:21
DavideGerbaudo
L1Topo
plots for ATL-COM-DAQ-2016-143
png
ATL-COM-DAQ-2016-143-fig2.png
r1
manage
17.3 K
2016-09-20 - 14:21
DavideGerbaudo
L1Topo
plots for ATL-COM-DAQ-2016-143
png
ATL-COM-DAQ-2017-008.png
r1
manage
84.9 K
2017-03-30 - 13:19
DavideGerbaudo
L1Topo
bitwise comparison
pdf
ATL-COM-DAQ-2017-064_l1calo_pedestal_correction.pdf
r1
manage
47.6 K
2017-07-18 - 17:42
IvanaHristova
png
ATL-COM-DAQ-2017-064_l1calo_pedestal_correction.png
r1
manage
8.4 K
2017-07-18 - 17:42
IvanaHristova
pdf
ATL-COM-DAQ-2017-064_l1calo_pedestal_shift.pdf
r1
manage
42.5 K
2017-07-18 - 17:42
IvanaHristova
png
ATL-COM-DAQ-2017-064_l1calo_pedestal_shift.png
r1
manage
7.6 K
2017-07-18 - 17:42
IvanaHristova
pdf
ATL-COM-DAQ-2018-004-fig01.pdf
r1
manage
22.3 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig01.png
r1
manage
23.9 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
pdf
ATL-COM-DAQ-2018-004-fig02.pdf
r1
manage
24.0 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig02.png
r1
manage
29.2 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
pdf
ATL-COM-DAQ-2018-004-fig03.pdf
r1
manage
21.6 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig03.png
r1
manage
26.0 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
pdf
ATL-COM-DAQ-2018-004-fig04.pdf
r1
manage
22.3 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig04.png
r1
manage
24.9 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
pdf
ATL-COM-DAQ-2018-004-fig05.pdf
r1
manage
24.2 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig05.png
r1
manage
29.5 K
2018-01-30 - 09:51
MartinWessels
Figures of ATL-COM-DAQ-2018-004
pdf
ATL-COM-DAQ-2018-004-fig06.pdf
r1
manage
23.8 K
2018-01-30 - 09:52
MartinWessels
Figures of ATL-COM-DAQ-2018-004
png
ATL-COM-DAQ-2018-004-fig06.png
r1
manage
28.0 K
2018-01-30 - 09:52
MartinWessels
Figures of ATL-COM-DAQ-2018-004
eps
ATL-COM-DAQ-2018-170_plot_1.eps
r1
manage
23.3 K
2018-11-22 - 10:06
IvanaHristova
pdf
ATL-COM-DAQ-2018-170_plot_1.pdf
r1
manage
16.6 K
2018-11-22 - 10:06
IvanaHristova
png
ATL-COM-DAQ-2018-170_plot_1.png
r1
manage
19.2 K
2018-11-22 - 10:06
IvanaHristova
eps
ATL-COM-DAQ-2018-170_plot_2.eps
r1
manage
20.9 K
2018-11-22 - 10:06
IvanaHristova
pdf
ATL-COM-DAQ-2018-170_plot_2.pdf
r1
manage
16.2 K
2018-11-22 - 10:06
IvanaHristova
png
ATL-COM-DAQ-2018-170_plot_2.png
r1
manage
16.4 K
2018-11-22 - 10:06
IvanaHristova
eps
ATL-DAQ-PUB-2010-001-fig_01a.eps
r1
manage
123.5 K
2011-06-23 - 16:43
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_01a.png
r1
manage
17.3 K
2011-06-23 - 16:43
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_01b.eps
r1
manage
187.9 K
2011-06-23 - 16:43
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_01b.png
r1
manage
23.0 K
2011-06-23 - 16:43
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_02a.eps
r1
manage
101.0 K
2011-06-24 - 12:32
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_02a.png
r1
manage
43.2 K
2011-06-24 - 12:33
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_02b.eps
r1
manage
98.3 K
2011-06-24 - 12:33
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_02b.png
r1
manage
42.7 K
2011-06-24 - 12:33
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_03a.eps
r1
manage
10.0 K
2011-06-24 - 12:33
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_03a.png
r1
manage
23.1 K
2011-06-24 - 12:34
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_03b.eps
r1
manage
10.0 K
2011-06-24 - 12:34
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_03b.png
r1
manage
23.2 K
2011-06-24 - 12:34
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_05a.eps
r1
manage
110.0 K
2011-06-24 - 12:34
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_05a.png
r1
manage
13.6 K
2011-06-24 - 12:35
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_05b.eps
r1
manage
113.5 K
2011-06-24 - 12:35
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_05b.png
r1
manage
15.0 K
2011-06-24 - 12:37
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_06a.eps
r1
manage
110.8 K
2011-06-24 - 12:35
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_06a.png
r1
manage
12.8 K
2011-06-24 - 12:35
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_06b.eps
r1
manage
111.2 K
2011-06-24 - 12:37
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_06b.png
r1
manage
13.3 K
2011-06-24 - 12:37
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_07a.eps
r1
manage
111.5 K
2011-06-24 - 12:38
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_07a.png
r1
manage
14.2 K
2011-06-24 - 12:38
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_07b.eps
r1
manage
111.9 K
2011-06-24 - 12:38
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_07b.png
r1
manage
14.1 K
2011-06-24 - 12:39
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_08a.eps
r1
manage
112.9 K
2011-06-24 - 12:39
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_08a.png
r1
manage
46.7 K
2011-06-24 - 12:39
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_08b.eps
r1
manage
495.6 K
2011-06-24 - 12:39
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_08b.png
r1
manage
44.7 K
2011-06-24 - 12:40
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_09a.eps
r1
manage
9.9 K
2011-06-24 - 12:40
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_09a.png
r1
manage
22.9 K
2011-06-24 - 12:41
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_09b.eps
r1
manage
10.0 K
2011-06-24 - 12:41
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_09b.png
r1
manage
23.3 K
2011-06-24 - 12:41
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_10a.eps
r1
manage
149.7 K
2011-06-24 - 12:41
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_10a.png
r1
manage
21.6 K
2011-06-24 - 12:42
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_10b.eps
r1
manage
152.2 K
2011-06-24 - 12:42
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_10b.png
r1
manage
22.9 K
2011-06-24 - 12:42
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_11a.eps
r1
manage
117.0 K
2011-06-24 - 12:42
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_11a.png
r1
manage
47.0 K
2011-06-24 - 12:43
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_11b.eps
r1
manage
108.8 K
2011-06-24 - 12:43
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_11b.png
r1
manage
45.0 K
2011-06-24 - 12:43
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_12a.eps
r1
manage
103.7 K
2011-06-24 - 12:43
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_12a.png
r1
manage
35.3 K
2011-06-24 - 12:44
MartinWessels
eps
ATL-DAQ-PUB-2010-001-fig_12b.eps
r1
manage
111.9 K
2011-06-24 - 12:44
MartinWessels
png
ATL-DAQ-PUB-2010-001-fig_12b.png
r1
manage
40.1 K
2011-06-24 - 12:44
MartinWessels
eps
ATL_COM_DAQ-2013-016-fig10.eps
r1
manage
16.1 K
2013-05-14 - 18:25
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig10.png
r1
manage
24.5 K
2013-05-14 - 18:25
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig11.eps
r1
manage
17.1 K
2013-05-14 - 18:25
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig11.png
r1
manage
36.1 K
2013-05-14 - 18:25
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig12.eps
r1
manage
15.6 K
2013-05-14 - 18:25
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig12.png
r1
manage
34.0 K
2013-05-14 - 18:25
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig13.eps
r1
manage
120.8 K
2013-05-14 - 18:25
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig13.png
r1
manage
20.9 K
2013-05-14 - 18:25
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig14.eps
r1
manage
72.5 K
2013-05-14 - 18:28
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig14.png
r1
manage
18.9 K
2013-05-14 - 18:28
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig15.eps
r1
manage
60.2 K
2013-05-14 - 18:28
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig15.png
r1
manage
17.9 K
2013-05-14 - 18:28
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig16.eps
r1
manage
49.9 K
2013-05-14 - 18:28
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig16.png
r1
manage
17.8 K
2013-05-14 - 18:28
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig17.eps
r1
manage
12.3 K
2013-05-14 - 18:28
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig17.png
r1
manage
15.6 K
2013-05-14 - 18:28
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig18.eps
r1
manage
12.3 K
2013-05-14 - 18:29
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig18.png
r1
manage
15.8 K
2013-05-14 - 18:29
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig19.eps
r1
manage
12.3 K
2013-05-14 - 18:29
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig19.png
r1
manage
14.5 K
2013-05-14 - 18:29
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig20.eps
r1
manage
12.8 K
2013-05-14 - 18:32
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig20.png
r1
manage
14.4 K
2013-05-14 - 18:32
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig21.eps
r1
manage
10.9 K
2013-05-14 - 18:32
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig21.png
r1
manage
11.8 K
2013-05-14 - 18:32
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig22.eps
r1
manage
11.4 K
2013-05-14 - 18:32
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig22.png
r1
manage
12.1 K
2013-05-14 - 18:32
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig3.eps
r1
manage
11.6 K
2013-05-14 - 18:20
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig3.png
r1
manage
12.8 K
2013-05-14 - 18:20
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig4.eps
r1
manage
11.4 K
2013-05-14 - 18:20
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig4.png
r1
manage
13.0 K
2013-05-14 - 18:20
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig5.eps
r1
manage
39.7 K
2013-05-14 - 18:20
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig5.png
r1
manage
18.5 K
2013-05-14 - 18:20
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig6.eps
r1
manage
39.7 K
2013-05-14 - 18:23
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig6.png
r1
manage
18.4 K
2013-05-14 - 18:23
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig7.eps
r1
manage
19.8 K
2013-05-14 - 18:23
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig7.png
r1
manage
35.1 K
2013-05-14 - 18:23
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig8.eps
r1
manage
19.3 K
2013-05-14 - 18:23
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig8.png
r1
manage
35.5 K
2013-05-14 - 18:23
JurajBracinik
eps
ATL_COM_DAQ-2013-016-fig9.eps
r1
manage
15.9 K
2013-05-14 - 18:23
JurajBracinik
png
ATL_COM_DAQ-2013-016-fig9.png
r1
manage
24.2 K
2013-05-14 - 18:23
JurajBracinik
png
BCID_Eff_EMB.png
r1
manage
13.6 K
2015-11-23 - 13:16
IvanaHristova
png
BCID_Eff_EMEC.png
r1
manage
13.2 K
2015-11-23 - 13:16
IvanaHristova
png
BCID_Eff_FCAL.png
r1
manage
14.4 K
2015-11-23 - 13:16
IvanaHristova
eps
ClosebyJets.eps
r1
manage
18.5 K
2018-07-02 - 14:38
BenCarlson
pdf
ClosebyJets.pdf
r1
manage
18.5 K
2018-07-02 - 14:38
BenCarlson
png
ClosebyJets.png
r1
manage
23.8 K
2018-07-02 - 14:38
BenCarlson
eps
EMB.eps
r1
manage
75.6 K
2015-12-04 - 00:02
IvanaHristova
pdf
EMB.pdf
r1
manage
17.6 K
2015-12-04 - 00:02
IvanaHristova
png
EMB.png
r1
manage
27.2 K
2015-12-04 - 00:02
IvanaHristova
eps
EMB.prel.eps
r1
manage
77.9 K
2015-12-28 - 09:09
IvanaHristova
pdf
EMB.prel.pdf
r1
manage
17.6 K
2015-12-28 - 08:56
IvanaHristova
png
EMB.prel.png
r1
manage
10.9 K
2015-12-28 - 09:50
IvanaHristova
eps
EMEC_IW.eps
r1
manage
62.1 K
2015-12-04 - 00:03
IvanaHristova
pdf
EMEC_IW.pdf
r1
manage
15.9 K
2015-12-04 - 00:03
IvanaHristova
png
EMEC_IW.png
r1
manage
26.0 K
2015-12-04 - 00:03
IvanaHristova
eps
EMEC_IW.prel.eps
r1
manage
64.6 K
2015-12-28 - 09:09
IvanaHristova
pdf
EMEC_IW.prel.pdf
r1
manage
15.9 K
2015-12-28 - 08:56
IvanaHristova
png
EMEC_IW.prel.png
r1
manage
10.7 K
2015-12-28 - 09:50
IvanaHristova
eps
EM_Layer.eps
r1
manage
779.0 K
2015-12-03 - 23:40
IvanaHristova
pdf
EM_Layer.pdf
r1
manage
73.6 K
2015-12-03 - 23:40
IvanaHristova
png
EM_Layer.png
r2
r1
manage
141.0 K
2015-12-03 - 23:56
IvanaHristova
eps
EM_Layer_AC25.prel.eps
r1
manage
781.2 K
2015-12-28 - 09:09
IvanaHristova
pdf
EM_Layer_AC25.prel.pdf
r1
manage
73.6 K
2015-12-28 - 08:56
IvanaHristova
png
EM_Layer_AC25.prel.png
r1
manage
101.6 K
2015-12-28 - 09:50
IvanaHristova
eps
EM_Layer_Matched.eps
r1
manage
936.7 K
2015-12-03 - 23:40
IvanaHristova
pdf
EM_Layer_Matched.pdf
r1
manage
84.3 K
2015-12-03 - 23:40
IvanaHristova
png
EM_Layer_Matched.png
r2
r1
manage
120.7 K
2015-12-03 - 23:56
IvanaHristova
eps
EM_Layer_Matched.prel.eps
r1
manage
938.8 K
2015-12-28 - 09:09
IvanaHristova
pdf
EM_Layer_Matched.prel.pdf
r1
manage
84.3 K
2015-12-28 - 08:56
IvanaHristova
png
EM_Layer_Matched.prel.png
r1
manage
87.2 K
2015-12-28 - 09:50
IvanaHristova
pdf
EMratesB_vs_instlumiB.pdf
r1
manage
17.2 K
2015-11-23 - 14:13
IvanaHristova
png
EMratesB_vs_instlumiB.png
r1
manage
26.8 K
2015-11-23 - 14:10
IvanaHristova
eps
EMratesB_vs_instlumiB_final.eps
r1
manage
21.0 K
2015-12-17 - 14:14
AndrewDaniells
pdf
EMratesB_vs_instlumiB_final.pdf
r2
r1
manage
20.3 K
2015-12-17 - 14:12
AndrewDaniells
png
EMratesB_vs_instlumiB_final.png
r3
r2
r1
manage
47.9 K
2015-12-17 - 14:12
AndrewDaniells
eps
Electron.eps
r1
manage
18.9 K
2018-07-02 - 14:38
BenCarlson
pdf
Electron.pdf
r1
manage
19.8 K
2018-07-02 - 14:38
BenCarlson
png
Electron.png
r1
manage
24.9 K
2018-07-02 - 14:38
BenCarlson
eps
FCAL1-3.4.prel.eps
r1
manage
78.7 K
2015-12-28 - 09:09
IvanaHristova
pdf
FCAL1-3.4.prel.pdf
r1
manage
18.5 K
2015-12-28 - 08:56
IvanaHristova
png
FCAL1-3.4.prel.png
r1
manage
12.3 K
2015-12-28 - 09:50
IvanaHristova
eps
FCAL1-34.eps
r1
manage
76.2 K
2015-12-04 - 00:07
IvanaHristova
pdf
FCAL1-34.pdf
r1
manage
18.5 K
2015-12-04 - 00:07
IvanaHristova
png
FCAL1-34.png
r1
manage
30.5 K
2015-12-04 - 00:07
IvanaHristova
png
FIR_autocorr_em.png
r1
manage
42.7 K
2015-11-23 - 12:42
IvanaHristova
png
FIR_autocorr_had.png
r1
manage
43.0 K
2015-11-23 - 13:01
IvanaHristova
png
FIR_matched_em.png
r1
manage
39.1 K
2015-11-23 - 12:42
IvanaHristova
png
FIR_matched_had.png
r1
manage
41.5 K
2015-11-23 - 13:01
IvanaHristova
eps
Had_Layer.eps
r1
manage
794.9 K
2015-12-03 - 23:40
IvanaHristova
pdf
Had_Layer.pdf
r1
manage
75.0 K
2015-12-03 - 23:40
IvanaHristova
png
Had_Layer.png
r2
r1
manage
142.1 K
2015-12-03 - 23:56
IvanaHristova
eps
Had_Layer_AC25.prel.eps
r1
manage
797.1 K
2015-12-28 - 09:10
IvanaHristova
pdf
Had_Layer_AC25.prel.pdf
r1
manage
75.0 K
2015-12-28 - 08:56
IvanaHristova
png
Had_Layer_AC25.prel.png
r1
manage
102.3 K
2015-12-28 - 09:50
IvanaHristova
png
Had_Layer_Matched.png
r1
manage
122.0 K
2015-12-03 - 23:56
IvanaHristova
eps
Had_Layer_Matched.prel.eps
r1
manage
938.1 K
2015-12-28 - 09:10
IvanaHristova
pdf
Had_Layer_Matched.prel.pdf
r1
manage
84.4 K
2015-12-28 - 08:56
IvanaHristova
png
Had_Layer_Matched.prel.png
r1
manage
87.2 K
2015-12-28 - 09:50
IvanaHristova
eps
Inclusive.eps
r1
manage
16.3 K
2018-07-02 - 14:38
BenCarlson
pdf
Inclusive.pdf
r1
manage
17.4 K
2018-07-02 - 14:38
BenCarlson
png
Inclusive.png
r1
manage
20.9 K
2018-07-02 - 14:38
BenCarlson
eps
L1Calo_lar_barrel_lutslopes.eps
r1
manage
9.9 K
2018-07-02 - 17:23
JoergStelzer
png
L1Calo_lar_barrel_lutslopes.png
r1
manage
14.1 K
2018-07-02 - 17:23
JoergStelzer
eps
L1Calo_lutslope.eps
r1
manage
8324.1 K
2018-07-02 - 17:23
JoergStelzer
png
L1Calo_lutslope.png
r1
manage
28.3 K
2018-07-02 - 17:23
JoergStelzer
eps
MET.eps
r1
manage
14.7 K
2018-07-02 - 14:38
BenCarlson
pdf
MET.pdf
r1
manage
14.9 K
2018-07-02 - 14:38
BenCarlson
png
MET.png
r1
manage
21.0 K
2018-07-02 - 14:38
BenCarlson
eps
Scatter_EMB.eps
r1
manage
13.7 K
2018-07-02 - 17:02
JoergStelzer
png
Scatter_EMB.png
r1
manage
26.1 K
2018-07-02 - 17:02
JoergStelzer
eps
Scatter_TILE.eps
r1
manage
13.5 K
2018-07-02 - 17:02
JoergStelzer
png
Scatter_TILE.png
r1
manage
370.1 K
2018-07-02 - 17:02
JoergStelzer
png
XE35_BCID_25ns_PedCorrOn.png
r2
r1
manage
26.1 K
2015-12-05 - 18:43
IvanaHristova
png
XE35_BCID_50ns_PedCorrOff.png
r2
r1
manage
25.6 K
2015-12-05 - 18:43
IvanaHristova
png
XE35_BCID_50ns_PedCorrOn.png
r2
r1
manage
26.0 K
2015-12-05 - 18:43
IvanaHristova
pdf
XE35ratesB_vs_instlumiB_50ns.pdf
r1
manage
17.7 K
2015-11-23 - 14:13
IvanaHristova
png
XE35ratesB_vs_instlumiB_50ns.png
r1
manage
19.5 K
2015-11-23 - 14:10
IvanaHristova
eps
XE35ratesB_vs_instlumiB_50ns_final.eps
r1
manage
13.8 K
2015-12-17 - 14:14
AndrewDaniells
pdf
XE35ratesB_vs_instlumiB_50ns_final.pdf
r2
r1
manage
17.0 K
2015-12-17 - 14:16
AndrewDaniells
png
XE35ratesB_vs_instlumiB_50ns_final.png
r2
r1
manage
37.3 K
2015-12-17 - 14:15
AndrewDaniells
png
final_EMratesB_vs_instlumiB.png
r1
manage
47.9 K
2015-12-17 - 14:07
AndrewDaniells
eps
final_XE35ratesB_vs_instlumiB_50ns.eps
r1
manage
11.4 K
2016-07-21 - 13:33
IvanaHristova
pdf
final_XE35ratesB_vs_instlumiB_50ns.pdf
r1
manage
15.1 K
2016-07-21 - 13:33
IvanaHristova
png
final_XE35ratesB_vs_instlumiB_50ns.png
r1
manage
34.3 K
2016-07-21 - 13:33
IvanaHristova
eps
final_XE50ratesB_vs_instlumiB_50ns.eps
r1
manage
11.1 K
2016-07-21 - 13:33
IvanaHristova
pdf
final_XE50ratesB_vs_instlumiB_50ns.pdf
r1
manage
15.1 K
2016-07-21 - 13:33
IvanaHristova
png
final_XE50ratesB_vs_instlumiB_50ns.png
r1
manage
33.7 K
2016-07-21 - 13:33
IvanaHristova
eps
ramp_emb.eps
r1
manage
10.5 K
2018-07-02 - 17:02
JoergStelzer
png
ramp_emb.png
r1
manage
332.7 K
2018-07-02 - 17:02
JoergStelzer
eps
ramp_tile.eps
r1
manage
10.5 K
2018-07-02 - 17:02
JoergStelzer
png
ramp_tile.png
r1
manage
331.0 K
2018-07-02 - 17:02
JoergStelzer
eps
roi.eps
r1
manage
15.0 K
2015-09-03 - 20:33
IvanaHristova
pdf
roi.pdf
r1
manage
15.5 K
2015-09-03 - 20:33
IvanaHristova
png
roi.png
r1
manage
21.6 K
2015-09-03 - 20:33
IvanaHristova
eps
roi_276731.eps
r1
manage
18.6 K
2015-11-23 - 20:25
IvanaHristova
pdf
roi_276731.pdf
r1
manage
6.4 K
2015-11-23 - 20:29
IvanaHristova
png
roi_276731.png
r1
manage
23.3 K
2015-11-23 - 20:29
IvanaHristova
eps
tob.eps
r1
manage
15.2 K
2015-09-03 - 20:33
IvanaHristova
pdf
tob.pdf
r1
manage
15.5 K
2015-09-03 - 20:33
IvanaHristova
png
tob.png
r1
manage
21.8 K
2015-09-03 - 20:33
IvanaHristova
eps
tob_276731.eps
r1
manage
18.6 K
2015-11-23 - 20:29
IvanaHristova
pdf
tob_276731.pdf
r1
manage
6.4 K
2015-11-23 - 20:29
IvanaHristova
png
tob_276731.png
r1
manage
23.3 K
2015-11-23 - 20:29
IvanaHristova
This topic: AtlasPublic
>
TriggerPublicResults
>
L1CaloTriggerPublicResults
Topic revision: r38 - 2018-11-23 - ImmaRiu
Copyright &© 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use
Discourse
or
Send feedback