Monte Carlo samples for CLICdet

A description of Whizard settings for CLICdet along with selected Sindarin examples is provided at this repository: https://gitlab.cern.ch/CLICdp/DetectorSoftware/clic-whizard2-settings

  • All samples were generated using WHIZARD2.7.0-2.8.3 unless stated otherwise.
  • The detector model is CLIC_o3_v14 unless stated otherwise.
  • If not stated otherwise, beam spectra from CIRCE2 and ISR pt from the recoil handler are used.
  • Resonance history settings for the Pythia6 interface are:
resonance_on_shell_limit   = 16
resonance_on_shell_turnoff = 8

  • Cuts correspond to default Whizard 1 cuts:
    • For ee->qq, ee->qqqq, ee->hqq, ee->qqqqqq samples: m(qq) > 10 GeV
    • For samples with lepton pairs: M(ll) > 4 GeV
    • Q cut between incoming and outgoing e- (e+) (virtual photon): 1 GeV

In Sindarin:

real default_M_cut = 4 GeV
real default_jet_cut = 10 GeV
real default_E_cut = 10 GeV
real default_Q_cut = 4 GeV
alias quarks = u:d:s:c:b:U:D:S:C:B
cuts = all M > default_M_cut [lepton,lepton]
and all M > default_jet_cut [quarks,quarks]
and all M < - default_Q_cut [incoming e1, e1]
and all M < - default_Q_cut [incoming E1, E1]

Caveat for cuts: automatic flavor summation with charge-conjugated final states: https://answers.launchpad.net/whizard/+question/687913: don't sum automatically over lists of particles when applying cuts on part of the list only.

  • Parameters: m(u)=m(d)=m(s)=m(c)=m(b)=0
  • The column "Events produced" gives the approximate number of produced events. (Obtain the current number with something like dirac-ilc-find-in-FC /ilc/prod/ ProdID=... Datatype=DST | wc)

Samples at 350 GeV

Based on existing Whizard1 generation

Type ProdID Events planned Events produced σ [fb] Comments
ee->hZ, Z->qq, h->π_vπ_v, π_v->bb 14367 240000 240000 93.44* based on 10945
ee->hZ, Z->qq, h->π_vπ_v, π_v->bb 14369 240000 240000 93.44* based on 10942
ee -> qqnunu 14371 306500 306500 324.5353 based on 2860
* = assuming BR(h->π_vπ_v) = 100%, BR(π_v->bb) = 100% for the hidden valley pions π_v

WHIZARD samples at 380 GeV

Type ProdID Events planned Events produced σ [fb] Comments
ee -> HZ, Z->mumu 13384 30k 30000 4.0562080E+00 mH=125 GeV, 380 GeV beam spectrum and overlay, no polarisation

WHIZARD samples at 1.5 TeV assuming polarised beams

Beam spectrum and gg->had overlay is taken from 1.4 TeV (scaled to 1.5 TeV).

Various signal and background processes

Type ProdID Events planned Events produced σ [fb] Comments
ee -> ZHH 13338 1000 3250 7.8121091E-02 P(e-) = +80%
ee -> ZHH 13337 3000 3200 1.1231722E-01 P(e-) = -80%
ee -> qq 15300 1M 958700 2.863E+03 P(e-)=-80%
ee -> qq 15301 500k 479300 1.787E+03 P(e-)=+80%
ee->qqqq 13769 2M 1950200 1943.2 P(e-)=-80%
ee->qqqq 13770 2M 1949800 1943.2 P(e-)=-80%
ee->qqqq 13771 3k 1945200 260.3 P(e-)=+80%
ee -> ll 14397 500k 500100 1406 P(e-)=-80%; Q cut 400 GeV
ee -> ll 14398 500k 500000 1406 extension of 14397
ee -> ll 14399 500k 500100 1406 extension of 14397
ee -> ll 14400 500k 500000 1406 extension of 14397
ee -> ll 14401 500k 500000 1213 P(e-)=+80%; Q cut 400 GeV
ee -> qqlnu 14676 500k 499800 7001 P(e-)=-80%
ee -> qqlnu 14677 500k 500000 7001 P(e-)=-80%, extension of 14676
ee -> qqlnu 14678 500k 499900 7001 P(e-)=-80%, extension of 14676
ee -> qqlnu 14679 500k 499900 7001 P(e-)=-80%, extension of 14676
ee -> qqlnu 14680 500k 499900 1687 P(e-)=+80%
qq -> qqll 14692 500k 500000 2715 P(e-)=-80%
qq -> qqll 14693 500k 500000 2715 P(e-)=-80%, extension of 14692
qq -> qqll 14694 500k 500100 2502 P(e-)=+80%
ee -> qqnunu 14885 1M 1000100 1460 P(e-) = -80%
ee -> qqnunu 14886 100k 100100 185 P(e-) = +80%
ee -> qqqqlnu 14970 500k 493300 169 P(e-) = -80%
ee -> qqqqlnu 14971 40k 97900 57.8 P(e-) = +80%
ee -> qqlnununu 15008 500k 492300 66.8 P(e-) = -80%
ee -> qqlnununu 15009 50k 48100 7.6 P(e-) = +80%
ee -> qqlnulnu 14992 100k 97400 14.9 P(e-) = -80%
ee -> qqlnulnu 14993 10k 10000 4.9 P(e-) = +80%

Inert Doublet Model at 1.5 TeV

Benchmark Point ProdID Events planned Events produced σ [fb] Comments
bp21 14321 50k 50k 8.093 P(e-)=-80%
bp23 14322 50k 50k 12.497 P(e-)=-80%
hp17 14323 50k 50k 2.435 P(e-)=-80%
hp20 14324 50k 50k 1.323 P(e-)=-80%
hp3 14325 50k 50k 0.6294 P(e-)=-80%

Samples compatible with ttbar fully hadronic at 1.5 TeV

  • For all samples: mH = 10 TeV; m(qq) > 10 GeV; alphas = 0
  • "y" = d, s, b
  • "x" = u, c
=> Compatible with ttbar means all combinations of yyxyyx because the top decays both always give down-type quarks.

The processes ee -> bbcbbc, ee->bbubbu, ee->ddcyyc, ee->dduyyu, ee->sscbbc, ee->sscssc, ee->ssussu, ee->ssubbu, ee->yyccyyu, ee->yyuyyc are defined in such a way that they are mutually exclusive and cover all flavor combinations for 6-quark final states.

Type ProdID Events planned Events produced σ [fb] Comments
ee->bbcbbc   300   1.297E-02 P(e-)=-80%
ee->bbcbbc   100   4.429E-03 P(e-)=+80%
ee->bbubbu   300   1.285E-02 P(e-)=-80%
ee->bbubbu   100   4.382E-03 P(e-)=+80%
ee->ddcyyc   45000   1.794E+00 P(e-)=-80%
ee->ddcyyc   6100   2.473E-01 P(e-)=+80%
ee->dduyyu   720000   2.886E+01 P(e-)=-80%
ee->dduyyu   300000   1.157E+01 P(e-)=+80%
ee->sscbbc   650000   2.568E+01 P(e-)=-80%
ee->sscbbc   300000   1.185E+01 P(e-)=+80%
ee->sscssc   35000   1.493E+00 P(e-)=-80%
ee->sscssc   4000   1.761E-01 P(e-)=+80%
ee->ssubbu   3000   1.209E-01 P(e-)=-80%
ee->ssubbu   1200   5.108E-02 P(e-)=+80%
ee->ssussu   500   1.726E-02 P(e-)=-80%
ee->ssussu   200   4.895E-03 P(e-)=+80%
ee->yycyyu   800000   3.195E+01 P(e-)=-80%
ee->yycyyu   300000   1.270E+01 P(e-)=+80%
ee->yyuyyc   800000   3.179E+01 P(e-)=-80%
ee->yyuyyc   300000   1.272E+01 P(e-)=+80%

WHIZARD samples at 3 TeV assuming polarised beams

Various signal and background processes (Standard Model)

Type ProdID Events planned Events produced σ [fb] Comments
ee -> qq 13399 400k 404350 1269 (*) P(e-) = -80%, mH=125 GeV, q=u,d,s,c,b
ee -> qq 13400 400k 404325 1269 (*) extension of 13399
ee -> qq 13401 400k 404575 1269 (*) extension of 13399
ee -> qq 13402 400k 404325 1269 (*) extension of 13399
ee -> qq 13398 400k 404475 786 (*) P(e-) = +80%, mH=125 GeV, q=u,d,s,c,b
ee -> qq 13425 400k 397600 170.8 P(e-) = -80%, mH=125 GeV, q=u,d,s,c,b; m(qq)>1 TeV
ee -> qq 13426 400k 397875 170.8 extension of 13425
ee -> qq 13427 400k 397575 170.8 extension of 13425
ee -> qq 13428 400k 397750 170.8 extension of 13425
ee -> qq 13429 400k 398400 73.5 P(e-) = +80%, mH=125 GeV, q=u,d,s,c,b; m(qq)>1 TeV
ee -> qqqq 13394 500k 499000 902 P(e-) = -80%, mH = 10 TeV, q=u,d,s,c,b; with ISR PT recoil
ee -> qqqq 13395 500k 498725 902 extension of 13394
ee -> qqqq 13396 500k 498975 902 extension of 13394
ee -> qqqq 13397 500k 499050 902 extension of 13394
ee -> qqqq 13393 500k 498700 120 P(e-) = +80%, mH = 10 TeV, q=u,d,s,c,b; with ISR PT recoil
ee -> qqqq 13696 400k 399300 369.8 P(e-) = -80%, mH = 10 TeV, q=u,d,s,c,b; m(qqqq)> 2000 GeV
ee -> qqqq 13697 400k 399450 369.8 extension of 13696
ee -> qqqq 13698 400k 399250 369.8 extension of 13696
ee -> qqqq 13699 400k 399125 369.8 extension of 13696
ee -> qqqq 13700 400k 399025 49.2 P(e-) = +80%, mH = 10 TeV, q=u,d,s,c,b; m(qqqq)> 2000 GeV
ee -> hqq 13391 120k 121250 3.83 P(e-)=-80%, q=udscb, mH=125 GeV, mqq>10!GeV; with ISR PT recoil
ee -> hqq 13392 30k 30250 2.67 P(e-)=+80%, q=udscb, mH=125 GeV, mqq>10!GeV; with ISR PT recoil
ee -> hZ, Z->ll 13389 12k 12000 3.7966586E-01 P(e-)=-80%, l=e,mu, mH=125 GeV, m(ll) > 4 GeV
ee -> hZ, Z->ll 13390 3k 3000 2.6364074E-01 P(e-)=+80%, l=e,mu, mH=125 GeV, m(ll) > 4 GeV
ee -> ZHH 14343 10k 10000 6.06E-02 P(e-) = -80%
ee -> ZHH 14344 10k 10000 4.23E-02 P(e-) = +80%
ee -> qqHH 14364 40k 40000 4.18E-02 P(e-) = -80%
ee -> qqHH 14365 40k 39950 2.898E-02 P(e-) = +80%
gg -> had only 13903 125k 125k - no "signal", only the gamma gamma -> hadrons at 3 TeV (30 BX)
gg -> had only 13904 125k 125k - extension of 13903
gg -> had only 13927 125k 125k - extension of 13903
gg -> had only 13930 125k 125k - extension of 13903
gg -> had only 13933 125k 125k - extension of 13903
gg -> had only 13936 125k 125k - extension of 13903
gg -> had only 13939 125k 125k - extension of 13903
gg -> had only 13942 125k 125k - extension of 13903
gg -> had only 13945 125k 125k - extension of 13903
gg -> had only 13948 125k 125k - extension of 13903
ee -> ll 14382 500k 499725 1664.9796 P(e-)=-80%; Q cut 400 GeV
ee -> ll 14383 500k 499775 1664.9796 extension of 14382
ee -> ll 14384 500k 499600 1664.9796 extension of 14382
ee -> ll 14385 500k 499750 1664.9796 extension of 14382
ee -> ll 14386 500k 499450 1439.0744 P(e-)=+80%; Q cut 400 GeV
ee->qqlnu 14545 250k 244875 8672 P(e-)=-80%, default cuts, (**)
ee->qqlnu 14546 250k 245175 8672 extension of 14545, (**)
ee->qqlnu 14547 250k 244875 8672 extension of 14545, (**)
ee->qqlnu 14548 250k 244850 8672 extension of 14545, (**)
ee->qqlnu 14549 250k 244700 8672 extension of 14545, (**)
ee->qqlnu 14550 250k 245050 8672 extension of 14545, (**)
ee->qqlnu 14551 250k 245200 8672 extension of 14545, (**)
ee->qqlnu 14552 250k 245025 8672 extension of 14545, (**)
ee->qqlnu 14553 250k 245050 8672 extension of 14545, (**)
ee->qqlnu 14554 250k 245225 8672 extension of 14545, (**)
ee->qqlnu 14555 250k 244675 8672 extension of 14545, (**)
ee->qqlnu 14556 250k 244825 8672 extension of 14545, (**)
ee->qqlnu 14557 250k 245500 8672 extension of 14545, (**)
ee->qqlnu 14558 250k 245025 8672 extension of 14545, (**)
ee->qqlnu 14559 250k 245050 8672 extension of 14545, (**)
ee->qqlnu 14560 250k 245000 8672 extension of 14545, (**)
ee->qqlnu 14561 250k 247050 2291.6 P(e-)=+80%, default cuts, (**)
ee->qqlnu 14562 250k 246875 2291.6 extension of 14561, (**)
ee -> qqll 14654 250k 248125 3.180E+03 P(e-)=-80%, (**)
ee -> qqll 14655 250k 247750 3.180E+03 P(e-)=-80%, extension of 14654, (**)
ee -> qqll 14656 250k 247825 3.180E+03 P(e-)=-80%, extension of 14654, (**)
ee -> qqll 14657 250k 248450 3.180E+03 P(e-)=-80%, extension of 14654, (**)
ee -> qqll 14658 250k 248150 3.020E+03 P(e-)=+80%, (**)
ee -> qqll 14659 250k 248475 3.020E+03 P(e-)=+80%, extension of 14658, (**)
ee -> ZZH -> qqqqH 14726 6000 6025 1.3943515E-01 P(e-) = -80%
ee -> ZZH -> qqqqH 14727 3000 3025 7.1648198E-02 P(e-) = +80%
ee -> WWH -> qqqqH 14734 100k 99775 4.116E+00 P(e-) = -80%
ee -> WWH -> qqqqH 14735 2500 2525 5.176E-01 P(e-) = +80%
ee -> qqnunu 14869 500k 499950 2.3335039E+03 P(e-) = -80%
ee -> qqnunu 14870 500k 499850 2.3335039E+03 P(e-) = -80%, extension of 14869
ee -> qqnunu 14871 500k 499925 2.3335039E+03 P(e-) = -80%, extension of 14869
ee -> qqnunu 14872 500k 499850 2.3335039E+03 P(e-) = -80%, extension of 14869
ee -> qqnunu 14873 500k 499900 2.7006587E+02 P(e-) = +80%
ee -> qqnunu 14874 500k 500000 2.7006587E+02 P(e-) = +80%, extension of 14873
ee -> qqqqlnu 14960 300k 291200 148 P(e-) = -80%
ee -> qqqqlnu 14961 300k 290250 148 P(e-) = -80%, extension of 14960
ee -> qqqqlnu 14962 50k 49675 42.2 P(e-) = +80%
ee -> qqlnununu 15018 250k 247350 96.8 P(e-) = -80%
ee -> qqlnununu 15019 250k 247700 14.0 P(e-) = -80%, extension of 15018
ee -> qqlnununu 15020 50k 49650   P(e-) = +80%
ee -> qqlnulnu 15028 120k 118625 20.4 P(e-) = -80%
ee -> qqlnulnu 15029 20k 19750 7.0 P(e-) = +80%

(*) Difference between cross sections from previous production for ee->qq is understood: It originates from the improved beam spectrum used now, which better models the low invariant mass region.

(**) Due to the extremely high number of hits for very few events (<0.1% of events) originating from very forward electrons (which most analyses will anyway not consider), a small number of jobs did not finish. The resulting bias is negligible.

Various signal processes (BSM)

Type ProdID Events planned Events produced σ [fb] Comments
ee -> ch1 ch1 -> neu1 pi neu1 pi 13901 50k 50025 13.04 P(e-)=-80%, m(ch1,ch1)>4GeV, pure higgsino, m_ch1=1050 GeV, m_neu1=1049.84, ctau(ch1)=600mm (v2)
ee -> ch1 ch1 -> neu1 pi neu1 pi 13902 50k 50025 3.94 P(e-)=+80%, m(ch1,ch1)>4GeV, pure higgsino, m_ch1=1050 GeV, m_neu1=1049.84, ctau(ch1)=600mm (v2)
ee -> ch1 ch1 -> neu1 pi neu1 pi 14633 50k 50025 8.50 no polarisation, without overlay, m(ch1,ch1)>4GeV, pure higgsino, m_ch1=1050 GeV, m_neu1=1049.84, ctau(ch1)=180mm (v3)
ee -> ch1 ch1 -> neu1 pi neu1 pi 14710 50k 50025 13.0 P(e-)=-80%, no overlay, m(ch1,ch1)>4GeV, pure higgsino, m_ch1=1050 GeV, m_neu1=1049.84, ctau(ch1)= 6.9mm (v4)
ee -> ch1 ch1 -> neu1 pi neu1 pi 14712 50k 50025 3.9 P(e-)=-80%, with overlay, m(ch1,ch1)>4GeV, pure higgsino, m_ch1=1050 GeV, m_neu1=1049.84, ctau(ch1)= 6.9mm (v4)

Inert Doublet Model at 3 TeV

Benchmark Point ProdID Events planned Events produced σ [fb] Comments
bp21 14214 50k 50k 4.213 P(e-)=-80%
bp23 14215 50k 50k 5.767 P(e-)=-80%
hp17 14216 50k 50k 1.678 P(e-)=-80%
hp20 14217 50k 50k 1.506 P(e-)=-80%
hp3 14218 50k 50k 1.775 P(e-)=-80%

Samples compatible with ttbar at 3 TeV

  • For all samples: mH = 10 TeV; m(qq) > 10 GeV; alphas = 0
  • "y" = d, s, b
  • "x" = u, c
only fully hadronic decay so far => 6 quarks compatible with ttbar means all combinations of yyxyyx because the top decays both always give down-type quarks.

The processes ee -> bbcbbc, ee->bbubbu, ee->ddcyyc, ee->dduyyu, ee->sscbbc, ee->sscssc, ee->ssussu, ee->ssubbu, ee->yycbbu, ee->yycddu, ee->yycssu, ee->yyubbc, ee->yyuddc, and ee->yyussc are defined in such a way that they are mutually exclusive and cover all flavor combinations for 6-quark final states. For computational reasons, the processes yycyyu and yyuyyc which were used in the previous productions of ttbar samples had to be split up.

Type ProdID Events planned Events produced σ [fb] Comments
ee->bbcbbc 13094 10000 10000 9.2271753E-03 P(e-)=-80%
ee->bbcbbc 13071 10000 9950 2.9986901E-03 P(e-)=+80%
ee->bbubbu 13095 10000 10000 9.1731760E-03 P(e-)=-80%
ee->bbubbu 13072 10000 10000 2.9825397E-03 P(e-)=+80%
ee->ddcyyc 13096 50000 50050 1.3757137E+00 P(e-)=-80%
ee->ddcyyc 13073 15000 14450 1.7824610E-01 P(e-)=+80%
ee->dduyyu 13097 480000 479075 1.4498909E+01 P(e-)=-80%
ee->dduyyu 13074 130000 126275 5.0109474E+00 P(e-)=+80%
ee->sscbbc 13098 350000 350125 1.2499614E+01 P(e-)=-80%
ee->sscbbc 13075 90000 89000 4.8938333E+00 P(e-)=+80%
ee->sscssc 13099 50000 50225 1.1651315E+00 P(e-)=-80%
ee->sscssc 13076 15000 14975 1.3677677E-01 P(e-)=+80%
ee->ssussu 13123 10000 9550 1.2615661E-02 P(e-)=-80%
ee->ssussu 13077 10000 9875 3.3776171E-03 P(e-)=+80%
ee->ssubbu 13292 20000 20250 5.4145233E-02 P(e-)=-80%
ee->ssubbu 13293 10000 10250 2.3216638E-02 P(e-)=+80%
ee->yycbbu 13318 430k 449775 1.3394883E+01 P(e-)=-80%
ee->yycbbu 13322 130k 130075 5.2101109E+00 P(e-)=+80%
ee->yycddu 13326 63k 62675 2.0054737E+00 P(e-)=-80%
ee->yycddu 13319 10k 10225 4.0984879E-01 P(e-)=+80%
ee->yycssu 13323 64k 65025 2.0248353E+00 P(e-)=-80%
ee->yycssu 13327 10k 10250 4.1853929E-01 P(e-)=+80%
ee->yyubbc 13320 430k 449850 1.3330064E+01 P(e-)=-80%
ee->yyubbc 13324 130k 130125 5.2070149E+00 P(e-)=+80%
ee->yyuddc 13328 63k 62575 2.0034170E+00 P(e-)=-80%
ee->yyuddc 13321 10k 10250 4.1203686E-01 P(e-)=+80%
ee->yyussc 13325 64k 65125 2.0189010E+00 P(e-)=-80%
ee->yyussc 13329 10k 10250 4.2245034E-01 P(e-)=+80%
ee->yycyyu 13078 150000 84775 5.5459085E+00 P(e-)=+80% OVERLAP! (*)
ee->yyuyyc 13079 150000 85825 5.5374079E+00 P(e-)=+80% OVERLAP! (*)

(*) The processes ee_yycyyu (13078) and ee_yyuyyc (13079) - only produced for positive polarisation - correspond to ee_yycyyu=ee_yycbbu+ee_yycddu+ee_yycssu and ee_yyuyyc=ee_yyubbc+ee_yyuddc+ee_yyussc. The existing files for 13078 and 13079 can be used to extend the statistics. In the normalisation, keep in mind that they overlap.

Six-Quark Samples other than ttbar at 3 TeV

  • For all samples: mH = 10 TeV; m(qq) > 10 GeV; alphas = 0 * "y" = d, s, b
  • "x" = u, c
=> Non-ttbar samples with 6 quarks means all combinations of xxyxxy. The combinations xxxyyy and xxxxxy or yyyyyx are not possible as they would require a net W (instead of only WW) i.e. charge is not conserved.

These samples include all combinations of 3 electroweak gauge bosons, but no Higgs bosons.

Type ProdID Events planned Events produced σ [fb] Comments
ee->bbxxxx 14601 1800 1825 3.6427E-02 P(e-)=-80%
ee->bbxxxx 14602 600 625 1.1996E-02 P(e-)=+80%
ee->bdxxxx 14603 400 425 7.8948E-03 P(e-)=-80%
ee->bdxxxx 14476 50 75 9.1650E-04 P(e-)=+80%
ee->bsxxxx 14604 400 425 7.8901E-03 P(e-)=-80%
ee->bsxxxx 14478 50 75 9.0803E-04 P(e-)=+80%
ee->dbxxxx 14605 400 425 7.9020E-03 P(e-)=-80%
ee->dbxxxx 14480 50 75 9.1236E-04 P(e-)=+80%
ee->ddxxxx 14481 100000 100050 2.3698E+00 P(e-)=-80%
ee->ddxxxx 14482 14000 14075 2.7583E-01 P(e-)=+80%
ee->dsxxxx 14606 200000 200025 4.3881E+00 P(e-)=-80%
ee->dsxxxx 14607 20000 20025 5.0859E-01 P(e-)=+80%
ee->sbxxxx 14485 400 425 8.0580E-03 P(e-)=-80%
ee->sbxxxx 14608 50 75 9.1615E-04 P(e-)=+80%
ee->sdxxxx 14487 200000 200050 4.4150E+00 P(e-)=-80%
ee->sdxxxx 14488 20000 20075 5.1915E-01 P(e-)=+80%
ee->ssxxxx 14609 120000 119975 2.2316E+00 P(e-)=-80%
ee->ssxxxx 14610 14000 14025 2.6630E-01 P(e-)=+80%

Requests

To request new production samples for CLICdet and Whizard 2, send an e-mail to Ulrike Schnoor. Please provide the following information:

1. If the GEN files already exists:

  • What are the prodIDs?
  • The default is to produce only DST. Which additional collections are required, if any?
  • I will assume you need exactly the same number of events.
  • I will assume that the following default settings can be used. Let me know if any of these should be changed:
    • Overlay at the corresponding energy is switched on
    • Conformal tracking
    • detector model CLIC_o3_v14
    • latest installed version of the Software chain
    • Only DST files are kept (no REC)

2. New production

  • Do you have a Sindarin file? If yes, please send it to me.
  • Process
  • Center-of-mass energy
  • beam polarisation
  • Any non-standard settings for masses, couplings and other parameters
  • Number of events (usually about 10*luminosity*sigma, where the luminosity should be scaled by the polarisation fraction for samples with beam polarisation). The feasibility of the sample will be evaluated (normally a few million is the maximum for important processes).
  • Cuts in addition to standard cuts
  • The following default settings would be assumed unless you request otherwise:
    • Overlay at the corresponding energy is switched on
    • ISR on (except for processes with Matrix-Element photons)
    • Beamspectrum on
    • Pythia is used with the OPAL tune
    • Conformal tracking is used
    • detector model CLIC_o3_v14
    • Latest installed version of Whizard and of the Software chain
    • Only DST files are kept (no REC)
  • Is there a corresponding production with the old software chain? If yes, what is the prod ID?

-- UlrikeSchnoor - 2019-02-08

Edit | Attach | Watch | Print version | History: r90 < r89 < r88 < r87 < r86 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r90 - 2021-02-16 - UlrikeSchnoor
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CLIC All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2023 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback