Observation of the diphoton decay of the Higgs boson and measurement of its properties

EPJ C 74 (2014) 3076

Abstract

Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of $5.1fb^{-1}$ at $\sqrt{s}=7~TeV$ and $19.7fb^{-1}$ at $8TeV$. A clear signal is observed in the diphoton channel at a mass close to $125~GeV$ with a local significance of $5.7~\sigma$, where a significance of $5.2~\sigma$ is expected for the standard model Higgs boson. The mass is measured to be $124.70\pm0.34~GeV=124.70\pm0.31~stat\pm0.15~syst GeV$, and the best-fit signal strength relative to the standard model prediction is $1.14^{+0.26}_{-0.23}=1.14\pm0.21~stat$ $^{+0.09}_{-0.05}~syst$ $^{+0.13}_{-0.09}~theo$. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.

Plots from the paper

Fig_1.png pdf png
Invariant mass of e+e− pairs in Z → e+e− events in the 8 TeV data (points), and in simulated events (histogram), in which the electron showers are reconstructed as photons, and the full set of photon corrections and smearings are applied. The comparison is shown for (left) events with both showers in the barrel, and (right) the remaining events. For each bin, the ratio of the number of events in data to the number of simulated events is shown in the lower main plot.

Fig_2.png pdf png
Photon identification BDT score of the lower-scoring photon of diphoton pairs with an invariant mass in the range 100 < mγγ < 180 GeV, for events passing the preselection in the 8 TeV dataset (points), and for simulated background events (histogram with shaded error bands showing the statistical uncertainty). Histograms are also shown for different components of the simulated background, in which there are either two, one, or zero prompt signal-like photons. The tall histogram on the right (righthand vertical axis) corresponds to simulated Higgs boson signal events.

Fig_3.png pdf png
Comparison of the photon identification BDT score for electron showers in the barrel in Z → e+e− events in the 8 TeV dataset and MC simulated events, for events passing the pre- selection, but with the electron veto condition inverted. The systematic uncertainty assigned to the photon identification BDT score is shown as a band. The comparison is shown for two sets of events with different numbers of primary vertices, Nvtx. For each bin, the ratio of the number of events in data to the number of simulated events is shown in the lower plot.

Fig_4.png pdf png
Fraction of diphoton vertices (solid points) assigned, by the vertex assignment BDT, to a reconstructed vertex within 10 mm of their true location in simulated Higgs boson events, mH = 125 GeV, √s = 8 TeV, as a function of pγγ. Also shown is a band, the centre of which is the mean prediction, from the vertex probability BDT, of the proba- bility of correctly locating the vertex. The mean is calculated in pγγ bins, and the width of the band represents the event-to-event uncertainty in the estimates.

Fig_5.png pdf png
Distribution of the vertex probability estimate in Z → μ+μ− events. The vertex probability estimates in 8 TeV data (points), are compared to the estimates in MC simulation (histograms). The comparison is made separately for events in which the vertex is assigned to the same (open circles and filled histogram), or to a different vertex (filled circles and outlined histogram), as that identified by the muons.

Fig_6.png pdf png
Transformed diphoton BDT classifier score for events satisfying the full diphoton preselection in the 8 TeV data (points with error bars, left axis), and for simulated signal events from the four production processes (solid filled histograms, right axis). The outlined histogram, following the data points, is for simulated background events. The vertical dashed lines show the boundaries of the untagged event classes, with the leftmost dashed line representing the score below which events are discarded and not used in the final analysis.

Fig_7.png pdf png
Transformed diphoton BDT classifier score for Z → e+e− events in 8 TeV data, and in MC simulation, in which the electrons are reconstructed as photons. The distribution of simulated events is represented by a histogram, and the data by points with error bars. For each bin, the ratio of the number of events in data to the number of simulated events is shown in the lower plot. The bands in the two plots indicate the systematic uncertainty resulting from propagating to the diphoton BDT event classifier both the uncertainty assigned to the photon identification BDT score and the uncertainty in the per-photon estimator of the energy uncertainty. The vertical dashed lines show the boundaries of the untagged event classes, with the leftmost dashed line representing the score below which events are discarded and not used in the final analysis

Fig_8.png pdf png
Score of the combined dijet-diphoton BDT for events satisfying the dijet preselection in 8 TeV data (points with error bars, left axis) and for simulated signal events from the four production processes (histograms, right axis). The outlined histogram is for simulated background events; the shaded error bands on the histogram show the statistical uncertainty in the simulation. The vertical dashed lines show the boundaries of the event classes, with the leftmost dashed line representing the score below which events are not included in the VBF dijet-tagged classes, but remain candidates for inclusion in other classes. The classifier score is transformed such that signal events produced by the VBF process have a uniform, flat, distribution.

Fig_17.png pdf png
Sum of the 25 signal-plus-background model fits to the event classes in both the 7 and 8 TeV datasets, together with the data binned as a function of mγγ. The 1σ and 2σ uncertainty bands shown for the background component of the fit are computed from the fit uncertainty in the background yield in bins corresponding to those used to display the data. These bands do not contain the Poisson uncertainty that must be included when the full uncertainty in the number of background events in any given mass range is estimated. The lower plot shows the residual data after subtracting the fitted background component.

Fig_18.png pdf png
Local p-values as a function of mH for the 7 TeV, 8 TeV, and the combined dataset. The values of the expected significance, calculated using the background expectation obtained from the signal-plus-background fit, are shown as dashed lines.

Fig_19.png pdf png
Diphoton mass spectrum weighted by the ratio S/(S + B) in each event class, together with the background subtracted weighted mass spectrum

Fig_20_a.png pdf png Fig_20_b.png pdf png
Best-fit signal strength, μˆ, shown as a function of the mass hypothesis, mH. The results are shown for the standard analysis (left), and for the cut-based cross-check analysis (right)

Fig_21.png pdf png
Values of μˆ measured individually for all event classes in the 7 and 8 TeV datasets, fixing mH = 124.7 GeV. The horizontal bars indicate ±1 σ uncertainties in the values, and the vertical line and band indicate the best-fit signal strength in the combined fit to the data and its uncertainty.

Fig_22_a.png pdf png Fig_22_b.png pdf png
(left) Scan of the likelihood ratio, q, as a function of the hypothesised mass when μggH,ttH and μVBF, VH are allowed to vary independently. (right) Map of q(mH, μ) showing the 1σ and 2σ regions, and the best-fit point (mˆH,μˆ) = (124.70 GeV,1.14).

Fig_23.png pdf png
Map of the likelihood ratio q(μggH,ttH, μVBF, VH) with mH treated as a nuisance parameter. The 1 σ and 2 σ uncertainty contours are shown. The cross indicates the best-fit values, (μˆggH,ttH, μˆVBF, VH) = (1.13, 1.15), and the diamond represents the SM expectation.

Fig_24.png pdf png
Best-fit signal strength, μˆ, measured for each of the production processes in a combined fit where the signal strengths of all four processes have been allowed to vary independently in the fit. The signal mass, common to all four processes, is treated as a nuisance parameter in the fit. The horizontal bars indicate ±1 σ uncertainties in the values for the individual processes. The band corresponds to ±1 σ uncertainties in the value obtained from the combined fit with a single signal strength.

mva_toposcan_envelope.png pdf png
Best-fit signal strength, μˆ, measured for each of the tagged topologies in a combined fit where the signal strengths of all four processes have been allowed to vary independently in the fit. The signal mass, common to all four processes, is treated as a nuisance parameter in the fit. The horizontal bars indicate ±1 σ uncertainties in the values for the individual processes.

Fig_25_a.png pdf png Fig_25_b.png pdf png
Maps of the likelihood ratio q(κV, κf) (left), and q(κγ, κg) (right), showing the 1 σ and 2 σ uncertainty contours. The crosses indicate the best-fit values, and the diamonds indicate the SM expectation.

Fig_26.png pdf png
Scan of the negative-log-likelihood ratio as a function of the Higgs boson decay width. The observed (expected) upper limit on the width is found to be 2.4 (3.1) GeV at a 95% CL.

Fig_27.png pdf png
Exclusion limit on the signal strength, σ′/σSM, for a second Higgs-boson-like state with SM couplings taking the observed state at 125 GeV as part of the background. The shading indicates a window with a width of 10 GeV, centred at the best-fit mass, where the expected sensitivity to a second Higgs boson is severely degraded due to the presence of the already observed state.

Fig_28_a.png pdf png Fig_28_b.png pdf png
Exclusion limits on σ′/σSM for a second Higgs-boson-like state produced with gluon-gluon fusion only (left) or VBF and VH only (right) taking the observed state at 125 GeV as part of the background. The shading indicates a window with a width of 10 GeV, centred at the best-fit mass, where the expected sensitivity to a second Higgs boson is severely degraded due to the presence of the already observed state.

Fig_29_a.png pdf png Fig_29_b.png pdf png
Map of the values of the likelihood ratio q(x, ∆m) for two near mass-degenerate states parameterized by x (the fraction of signal in the lower mass state) and ∆m (the mass difference between the states). The black cross shows the best-fit value, and the lines correspond to the 1σ and 2σ uncertainty contours for the SM (single state) expectation (left plot) and the observation (right plot).

Fig_29_a.png pdf png Fig_29_b.png pdf png
Map of the values of the likelihood ratio q(x, ∆m) for two near mass-degenerate states parameterized by x (the fraction of signal in the lower mass state) and ∆m (the mass difference between the states). The black cross shows the best-fit value, and the lines correspond to the 1σ and 2σ uncertainty contours for the SM (single state) expectation (left plot) and the observation (right plot).

Fig_30.png pdf png
Product of acceptance and efficiency A × ε for 0+ (all SM production modes), 2+m (gluon-fusion) and 2+ (qq production) as a function of cosθ∗, as calculated for the 8 TeV dataset. The value of A × ε for the 2+m models divided by A × ε for SM is shown below, where the bands indicate the spread of values among the four diphoton classes. The cosθ∗ bin boundaries are shown by vertical dashed lines.

Fig_31.png pdf png
Histograms showing signal strength in five bins of cos θ∗ expected for SM, for 2+m produced by gg, and for 2+m produced by qq. The signal strength observed in the data is shown by the black points.

Fig_32.png pdf png
Test statistic for pseudo-experiments generated under the SM, 0+, hypothesis (open squares) and the graviton-like, 2+m, hypothesis (open diamonds), as a function of the fraction, fqq, of qq production. The observed distribution in the data is shown by the black points.

Image File links Description
Mgg_mva_fullrange_ch1_cat0_7TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 0 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat1_7TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 1 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat2_7TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 2 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat3_7TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 3 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat4_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VBF dijet 0 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat5_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VBF dijet 1 class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat6_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH tight lepton class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat7_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH loose lepton class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat8_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH MET class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat9_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the ttH lepton/multijet class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch1_cat10_7TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH dijet class of the 7 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.

Mgg_mva_fullrange_ch2_cat0_8TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 0 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat1_8TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 1 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat2_8TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 2 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat3_8TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 3 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat4_8TeV.png pdf png
(paper versions png pdf)
Events in the Untagged 4 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat5_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VBF dijet 0 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat6_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VBF dijet 1 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat7_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VBF dijet 2 class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat8_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH tight lepton class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat9_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH loose lepton class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat10_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH MET class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat11_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the ttH letopn class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat12_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the tth multijet class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.
Mgg_mva_fullrange_ch2_cat13_8TeV.png pdf png
(paper versions png pdf)
Events tagged in the VH dijet class of the 8 TeV dataset, binned as a function of mγγ, together with the background subtracted distribution.

Tables from the paper

tab1.png pdf png
Tab. 1: Photon preselection efficiencies for both the 7 and 8 TeV datasets measured for Z → e+e− events, where the electrons are reconstructed as photons, in four photon categories. Thestatistical uncertainties in the efficiencies found in simulated uncertainties measured in data are discussed in the text.

tab2.png pdf png
Tab. 2: Event classes for the 7 and 8 TeV datasets and some of their main selection requirements. Events are tested against the selection requirements of the classes in the order they are listed here.

tab3.png pdf png
Tab. 3: Expected number of SM Higgs boson events (mH = 125 GeV) and estimated background (“Bkg.”) at mγγ = 125 GeV for all event classes of the 7 and 8 TeV datasets. The composition of the SM Higgs boson signal in terms of the production processes and its mass resolution is also given. The number corresponding to the production process making the largest contribution to each event class is highlighted in boldface. Numbers are omitted for production processes representing less than 0.05% of the total signal. The variables used to characterize the resolution, σeff and σHM, are defined in the text.

tab4.png pdf png
Tab. 4: Selection requirements for the VBF dijet tag in the cut-based and dijet 2D analyses.

tab5.png pdf png
Tab. 5: Values of the best-fit signal strength, μˆ, when mH is treated as a nuisance parameter, for the 7 TeV, 8 TeV, and combined datasets. The corresponding best-fit value of mH, m^H, is also given.

tab6.png pdf png
Tab. 6: Expected and observed best-fit values of the signal strength for a SM Higgs boson signal in the alternative analyses, together with their uncertainties, indicating the expected uncertainty in the measurement at the best-fit values of mH, and the best-fit values obtained from the data. The corresponding values for the main analysis are shown for comparison.

tab7.png pdf png
Tab. 7: Magnitude of the uncertainty in the best fit signal strength, μˆ, induced by the systematic uncertainties in the signal model. To obtain the values, the quadratic subtraction, needed to remove the statistical uncertainty, is made for the positive and negative uncertainties separately. The values quoted are the average magnitudes of the positive and negative uncertainties. The statistical uncertainty includes all uncertainties in the background modelling.

tab8.png pdf png
Tab. 8: Magnitude of the uncertainty in the best fit mass induced by the systematic uncertainties in the signal model. These numbers have been obtained by quadratic subtraction of the statistical uncertainty. The statistical uncertainty includes all uncertainties in the background modelling.

tab9.png pdf png
Tab. 9: Expected and observed best-fit values of the signal strength modifiers μggH,ttH and μVBF, VH for a SM Higgs boson signal together with their uncertainties, indicating the expected uncertainty in the measurement and the best-fit values obtained from the data.

tab10.png pdf png
Tab. 10: Best-fit signal strength modifiers for the four production processes. The total uncertainty for each process is separated into statistical (stat) and systematic contributions. The systematic uncertainty has been separated, where feasible, into the contributions from theoretical (theo), and experimental (exp) uncertainties. To obtain the values, the quadratic subtraction, needed to remove the statistical uncertainty, is made for the positive and negative uncertainties separately. The values quoted are the average magnitudes of the positive and negative uncertainties.

tab11.png pdf png
Tab. 11: Expected and observed values of 1 − CLs for the 2+m signal hypothesis with respect to the 0+ hypothesis, for different mixtures of gg and qq production.

Additional plots

Signal model

Efficiency x acceptance as a function of the mass hypothesis

effAcc_vs_mass_7TeV.png effAcc_vs_mass_8TeV.png
pdf png pdf png
7 TeV dataset. 8 TeV dataset

Category composition for $m_{H} = 125 GeV$

signalComposition_7TeV.png signalComposition_8TeV.png
pdf png pdf png
Break-down of the contribution from different signal production mechanisms to the analysis categories.
Informations on the signal resolution and S/B ratio are also displayed.
7 TeV dataset. 8 TeV dataset

Di-photon mass distribution for $m_{H} = 125 GeV$

7TeV dataset

signal_7TeV_all.png signal_7TeV_cat0.png signal_7TeV_cat3.png
pdf png pdf png pdf png
All categories combined Untagged category 0 Untagged category 3

8TeV dataset

signal_8TeV_all.png signal_8TeV_cat0.png signal_8TeV_cat4.png
pdf png pdf png pdf png
All categories combined Untagged category 0 Untagged category 4

Alternative analyses

mva_mu_scan_fouranalyses.png pdf png Likelihood scan for the best fit signal strength, comparing different alternative analyses.
mva_rv_scan_fouranalyses.png pdf png Likelihood scan for the best fit signal strength for the VBF+VH production modes, comparing different alternative analyses.

fit_mh124p7_8TeV.png pdf png Example of sideband definition for a test mass mH =124GeV
data_function_scan.png pdf png Envelope method for the background description. The plot, based on a toy-simulation data set, show as an example how the functions used to describe the background change as a function of mu for different categories. The different colors/numbers represent different functions. The vertical lines show the best value $\hat{mu}$ and the $\pm 1,2 \sigma$ uncertainties.

sideband_model_bfmass_7TeV.png pdf png Number of events observed, expected from background and expected for Higgs signal, for the different BDT categories at 7 TeV.
sideband_model_bfmass_7TeV_diff.png pdf png Background subtracted number of events observed and expected for Higgs signal, for the different BDT categories at 7 TeV.
sideband_model_bfmass_8TeV.png pdf png Number of events observed, expected from background and expected for Higgs signal, for the different BDT categories at 8 TeV.
sideband_model_bfmass_8TeV_diff.png pdf png Background subtracted number of events observed and expected for Higgs signal, for the different BDT categories at 8 TeV.

Di-photon mass distributions, summed over all categories

Mass-fit MVA analysis

incMassBDT_7TeV.png incMassBDT_8TeV.png
pdf png pdf png
Diphoton invariant mass distributions for events selected by the mass-fit MVA, for data and simulation. Backgrounds are represented by the filled histograms, while signal for a Higgs boson with a mass of 125 GeV (scaled by a factor of 5) is shown by the red line. The shaded band represents the uncertainty on the the MC prediction.
7 TeV dataset. 8 TeV dataset

Cut-based analysis

incMassCiC_7TeV.png incMassCiC_8TeV.png
pdf png pdf png
Diphoton invariant mass distributions for events selected by the cut-based analysis, for data and simulation. Backgrounds are represented by the filled histograms, while signal for a Higgs boson with a mass of 125 GeV (scaled by a factor of 5) is shown by the red line. The shaded band represents the uncertainty on the the MC prediction.
7 TeV dataset. 8 TeV dataset

Background model

pull_mh.png pdf png Mean of the pull distribution for each family of function. The grey band indicates the acceptable level of bias.
pull_mu.png pdf png Mean of the pull distribution for each family of function. The grey band indicates the acceptable level of bias.

Vertex Identification

vertex_mva_zmumu.png pdf png Data/MC comparison for the vertex identification BDT score for the Z&arrow;μ+&mu- sample.
vtxProb.png pdf png Data/MC comparison for the MVA vertex probability estimator.

MVA discriminants

Fig_6_7TeV.png pdf png Transformed diphoton BDT classifier score for events in the 7!TeV di-photon dataset.
Fig_7_7TeV.png pdf png Transformed diphoton BDT classifier score for events in the 7!TeV di-electron dataset.
Fig_8_7TeV.png pdf png Score of the combined dijet-diphoton BDT for events satisfying the dijet preselection in 7 TeV dataset.

diphobdt_transformed_bg_8TeV.png pdf png Transformed diphoton BDT classifier score for events in the 8!TeV dataset, with predicted background composition.
diphobdt_transformed_bg_7TeV.png pdf png Transformed diphoton BDT classifier score for events in the 7!TeV dataset, with predicted background composition.

Trigger efficiency

turnon_pt.png pdf png Efficiency of the trigger selection as a function of the photon candidate transverse momentum, measured in Z&arrow; e+e- events
turnon_nvtx.png pdf png Efficiency of the trigger selection as a function of number of primary vertex in the event, measured in Z&arrow; e+e- events

Energy scale uncertainties

Energy corrections and resolution uncertainties 0.05 GeV
EB photon energy scale 0.04 GeV  
Other scale and resolution (including vertex ID eff.) 0.02 GeV  
Residual non-linearity 0.10 GeV
Electron-photon extrapolation 0.10 GeV
Knowledge of the material distribution 0.07 GeV  
Uncertainty on the E.M. shower simulation 0.06 GeV  
Uncertainty on crystals light collection efficiency profile 0.02 GeV  
Total 0.15 GeV
Summary of systematic uncertainties on the $m_{H}$ measurement.
The effect of individual sources is not know with an accuracy better than 0.01 GeV.

ecorrUnc.png pdf png Summary of systematic uncertainties associated with the energy scale corrections as a function of pseudorapidity and for high and low R9. The uncertainties are extracted from Z→ ee events and are used to derive the scale corrections. The uncertainties range from 0.05\% for unconverted photons in the ECAL central barrel, to 0.1\% for converted photons in the ECAL outer endcaps.
materialUnc.png pdf png Summary of systematic uncertainties associated with the limited knowledge of the material in front the ECAL. The energy scale has been assessed using simulated samples in which the tracker material is increased uniformly by 10 and 20\%, and an uncertainty is assigned to photon energies. The systematic uncertainty in the energy scale ranges from 0.03\% in the central ECAL barrel up to 0.3\% in the outer endcap. Two nuisance parameters, one for $\eta <1.0$ and one for the remainder of the $\eta$ range used in the analysis, are introduced to model this uncertainty, which is fully correlated between the 7 and 8\TeV datasets.

FNUF.png pdf png Illustration of the impact of the uncertainty in the light collection efficiency along the crystals on the photons and on electrons entering ECAL. For illustration purposes, the green and red curves show the energy deposition profiles in lead-tungstate for photons and electrons, according to the parameterization in NIM A128 (1975) 283-307. The quoted uncertainty of 0.02 GeV has been derived from the relative variation of the response to electrons and photons by modifying the light collection efficiency in full simulation
Topic attachments
I Attachment History Action Size Date Who Comment
PDFpdf Fig_1.pdf r1 manage 27.0 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_1.png r1 manage 95.8 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_10_a.pdf r1 manage 21.6 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_10_a.png r1 manage 98.8 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_10_b.pdf r1 manage 22.5 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_10_b.png r1 manage 109.5 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_10_c.pdf r1 manage 22.6 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_10_c.png r1 manage 101.9 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_10_d.pdf r1 manage 21.8 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_10_d.png r1 manage 92.1 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_10_e.pdf r1 manage 20.9 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_10_e.png r1 manage 83.9 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_11_a.pdf r1 manage 20.9 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_11_a.png r1 manage 69.9 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_11_b.pdf r1 manage 21.5 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_11_b.png r1 manage 96.2 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_12_a.pdf r1 manage 21.2 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_12_a.png r1 manage 77.9 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_12_b.pdf r1 manage 21.6 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_12_b.png r1 manage 92.7 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_12_c.pdf r1 manage 22.2 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_12_c.png r1 manage 109.4 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_13_a.pdf r1 manage 20.2 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_13_a.png r1 manage 58.2 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_13_b.pdf r1 manage 20.4 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_13_b.png r1 manage 61.6 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_13_c.pdf r1 manage 20.5 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_13_c.png r1 manage 58.8 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_13_d.pdf r1 manage 20.8 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_13_d.png r1 manage 70.2 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_14_a.pdf r1 manage 21.0 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_14_a.png r1 manage 67.7 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_14_b.pdf r1 manage 21.2 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_14_b.png r1 manage 83.2 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_14_c.pdf r1 manage 21.4 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_14_c.png r1 manage 82.2 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_14_d.pdf r1 manage 21.1 K 2014-07-02 - 11:41 MauroDonega  
PNGpng Fig_14_d.png r1 manage 79.7 K 2014-07-02 - 12:02 MauroDonega  
PDFpdf Fig_15.pdf r1 manage 20.4 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_15.png r1 manage 58.8 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_16_a.pdf r1 manage 20.6 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_16_a.png r1 manage 57.7 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_16_b.pdf r1 manage 20.9 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_16_b.png r1 manage 71.7 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_17.pdf r1 manage 55.2 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_17.png r1 manage 130.2 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_18.pdf r1 manage 17.1 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_18.png r1 manage 121.8 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_19.pdf r1 manage 52.3 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_19.png r1 manage 132.9 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_2.pdf r1 manage 22.1 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_2.png r1 manage 96.4 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_20_a.pdf r1 manage 16.0 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_20_a.png r1 manage 92.0 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_20_b.pdf r1 manage 16.0 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_20_b.png r1 manage 94.8 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_21.pdf r1 manage 15.9 K 2014-07-02 - 11:44 MauroDonega  
PNGpng Fig_21.png r1 manage 99.8 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_22_a.pdf r1 manage 14.8 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_22_a.png r1 manage 104.9 K 2014-07-02 - 12:03 MauroDonega  
PDFpdf Fig_22_b.pdf r1 manage 1031.8 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_22_b.png r1 manage 477.6 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_23.pdf r1 manage 531.5 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_23.png r1 manage 346.2 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_24.pdf r1 manage 14.1 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_24.png r1 manage 53.3 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_25_a.pdf r1 manage 400.0 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_25_a.png r1 manage 324.8 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_25_b.pdf r1 manage 196.3 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_25_b.png r1 manage 211.9 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_26.pdf r1 manage 16.0 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_26.png r1 manage 102.4 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_27.pdf r1 manage 18.6 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_27.png r1 manage 115.5 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_28_a.pdf r1 manage 18.9 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_28_a.png r1 manage 109.0 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_28_b.pdf r1 manage 18.8 K 2014-07-02 - 11:45 MauroDonega  
PNGpng Fig_28_b.png r1 manage 113.3 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_29_a.pdf r1 manage 83.4 K 2014-07-02 - 11:46 MauroDonega  
PNGpng Fig_29_a.png r1 manage 137.5 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_29_b.pdf r1 manage 87.4 K 2014-07-02 - 11:46 MauroDonega  
PNGpng Fig_29_b.png r1 manage 174.9 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_3.pdf r1 manage 44.4 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_3.png r1 manage 44.1 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_30.pdf r1 manage 16.8 K 2014-07-02 - 11:46 MauroDonega  
PNGpng Fig_30.png r1 manage 78.1 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_31.pdf r1 manage 14.5 K 2014-07-02 - 11:46 MauroDonega  
PNGpng Fig_31.png r1 manage 53.9 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_32.pdf r1 manage 14.7 K 2014-07-02 - 11:46 MauroDonega  
PNGpng Fig_32.png r1 manage 63.7 K 2014-07-02 - 12:05 MauroDonega  
PDFpdf Fig_4.pdf r1 manage 14.3 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_4.png r1 manage 62.1 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_5.pdf r1 manage 19.1 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_5.png r1 manage 91.4 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_6.pdf r1 manage 19.8 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_6.png r1 manage 34.3 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_6_7TeV.pdf r1 manage 19.5 K 2014-10-31 - 11:36 PasqualeMusella  
PNGpng Fig_6_7TeV.png r1 manage 124.6 K 2014-10-31 - 11:36 PasqualeMusella  
PDFpdf Fig_7.pdf r1 manage 35.6 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_7.png r1 manage 43.5 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_7_7TeV.pdf r1 manage 28.3 K 2014-10-31 - 11:36 PasqualeMusella  
PNGpng Fig_7_7TeV.png r1 manage 145.8 K 2014-10-31 - 11:36 PasqualeMusella  
PDFpdf Fig_8.pdf r1 manage 20.6 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_8.png r1 manage 35.3 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_8_7TeV.pdf r1 manage 20.4 K 2014-10-31 - 11:36 PasqualeMusella  
PNGpng Fig_8_7TeV.png r1 manage 125.7 K 2014-10-31 - 11:36 PasqualeMusella  
PDFpdf Fig_9_a.pdf r1 manage 22.1 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_9_a.png r1 manage 106.6 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_9_b.pdf r1 manage 22.3 K 2014-07-02 - 11:37 MauroDonega  
PNGpng Fig_9_b.png r1 manage 111.7 K 2014-07-02 - 11:51 MauroDonega  
PDFpdf Fig_9_c.pdf r1 manage 22.4 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_9_c.png r1 manage 109.2 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Fig_9_d.pdf r1 manage 22.6 K 2014-07-02 - 11:40 MauroDonega  
PNGpng Fig_9_d.png r1 manage 99.0 K 2014-07-02 - 12:01 MauroDonega  
PDFpdf Linearity_finalPlot_cat0TemplateEoP.pdf r2 r1 manage 176.8 K 2014-09-24 - 10:04 MauroDonega  
PNGpng Linearity_finalPlot_cat0TemplateEoP.png r2 r1 manage 29.4 K 2014-09-24 - 10:04 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat0_7TeV.pdf r1 manage 46.8 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat0_7TeV.png r1 manage 136.8 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat10_7TeV.pdf r1 manage 43.4 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat10_7TeV.png r1 manage 104.4 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat1_7TeV.pdf r1 manage 48.0 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat1_7TeV.png r1 manage 145.8 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat2_7TeV.pdf r1 manage 48.1 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat2_7TeV.png r1 manage 141.9 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat3_7TeV.pdf r1 manage 47.2 K 2014-07-01 - 19:03 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat3_7TeV.png r1 manage 127.3 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat4_7TeV.pdf r1 manage 44.4 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat4_7TeV.png r1 manage 104.0 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat5_7TeV.pdf r1 manage 46.4 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat5_7TeV.png r1 manage 131.8 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat6_7TeV.pdf r1 manage 42.1 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat6_7TeV.png r1 manage 89.1 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat7_7TeV.pdf r1 manage 42.4 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat7_7TeV.png r1 manage 94.1 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat8_7TeV.pdf r1 manage 42.7 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat8_7TeV.png r1 manage 90.5 K 2014-07-01 - 19:05 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch1_cat9_7TeV.pdf r1 manage 42.3 K 2014-07-01 - 18:57 MauroDonega  
PNGpng Mgg_mva_fullrange_ch1_cat9_7TeV.png r1 manage 91.6 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat0_8TeV.pdf r1 manage 46.2 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat0_8TeV.png r1 manage 130.3 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat10_8TeV.pdf r1 manage 45.8 K 2014-07-01 - 19:01 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat10_8TeV.png r1 manage 118.3 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat11_8TeV.pdf r1 manage 42.8 K 2014-07-01 - 19:01 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat11_8TeV.png r1 manage 88.8 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat12_8TeV.pdf r1 manage 44.1 K 2014-07-01 - 19:01 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat12_8TeV.png r1 manage 105.5 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat13_8TeV.pdf r1 manage 44.8 K 2014-07-01 - 19:01 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat13_8TeV.png r1 manage 115.4 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat1_8TeV.pdf r1 manage 47.7 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat1_8TeV.png r1 manage 138.1 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat2_8TeV.pdf r1 manage 47.8 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat2_8TeV.png r1 manage 130.4 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat3_8TeV.pdf r1 manage 46.6 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat3_8TeV.png r1 manage 125.2 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat4_8TeV.pdf r1 manage 45.9 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat4_8TeV.png r1 manage 118.8 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat5_8TeV.pdf r1 manage 45.3 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat5_8TeV.png r1 manage 113.1 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat6_8TeV.pdf r1 manage 46.8 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat6_8TeV.png r1 manage 130.0 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat7_8TeV.pdf r1 manage 47.6 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat7_8TeV.png r1 manage 142.7 K 2014-07-01 - 19:06 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat8_8TeV.pdf r1 manage 44.0 K 2014-07-01 - 18:58 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat8_8TeV.png r1 manage 101.0 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf Mgg_mva_fullrange_ch2_cat9_8TeV.pdf r1 manage 44.9 K 2014-07-01 - 19:01 MauroDonega  
PNGpng Mgg_mva_fullrange_ch2_cat9_8TeV.png r1 manage 115.8 K 2014-07-01 - 19:07 MauroDonega  
PDFpdf RawElog_EB.pdf r1 manage 23.4 K 2014-09-24 - 10:04 MauroDonega  
PNGpng RawElog_EB.png r1 manage 83.9 K 2014-09-24 - 10:04 MauroDonega  
PDFpdf RawElog_EE.pdf r1 manage 22.8 K 2014-09-24 - 10:06 MauroDonega  
PNGpng RawElog_EE.png r1 manage 80.3 K 2014-09-24 - 10:06 MauroDonega  
PDFpdf data_function_scan.pdf r1 manage 22.0 K 2014-09-24 - 10:04 MauroDonega  
PNGpng data_function_scan.png r1 manage 122.3 K 2014-09-24 - 10:04 MauroDonega  
PDFpdf diphobdt_transformed_bg_7TeV.pdf r1 manage 18.0 K 2014-10-31 - 11:40 PasqualeMusella  
PNGpng diphobdt_transformed_bg_7TeV.png r1 manage 78.5 K 2014-10-31 - 11:42 PasqualeMusella  
PDFpdf diphobdt_transformed_bg_8TeV.pdf r1 manage 17.8 K 2014-10-31 - 11:36 PasqualeMusella  
PNGpng diphobdt_transformed_bg_8TeV.png r1 manage 48.8 K 2014-10-31 - 11:36 PasqualeMusella  
PDFpdf et_corr.pdf r2 r1 manage 15.3 K 2014-09-24 - 10:09 MauroDonega  
PNGpng et_corr.png r2 r1 manage 34.0 K 2014-09-24 - 10:09 MauroDonega  
PDFpdf fit_mh124p7_8TeV.pdf r1 manage 65.0 K 2014-09-24 - 10:04 MauroDonega  
PNGpng fit_mh124p7_8TeV.png r1 manage 85.5 K 2014-09-24 - 10:04 MauroDonega  
PDFpdf mva_toposcan_envelope.pdf r2 r1 manage 13.8 K 2014-09-25 - 09:56 MauroDonega  
PNGpng mva_toposcan_envelope.png r2 r1 manage 47.4 K 2014-09-25 - 09:56 MauroDonega  
PDFpdf sideband_model_bfmass_7TeV.pdf r1 manage 15.7 K 2014-09-24 - 10:06 MauroDonega  
PNGpng sideband_model_bfmass_7TeV.png r1 manage 55.3 K 2014-09-24 - 10:21 MauroDonega  
PDFpdf sideband_model_bfmass_7TeV_diff.pdf r1 manage 14.7 K 2014-09-24 - 10:06 MauroDonega  
PNGpng sideband_model_bfmass_7TeV_diff.png r1 manage 60.2 K 2014-09-24 - 10:06 MauroDonega  
PDFpdf sideband_model_bfmass_8TeV.pdf r1 manage 16.4 K 2014-09-24 - 10:06 MauroDonega  
PNGpng sideband_model_bfmass_8TeV.png r1 manage 63.5 K 2014-09-24 - 10:06 MauroDonega  
PDFpdf sideband_model_bfmass_8TeV_diff.pdf r1 manage 15.1 K 2014-09-24 - 10:06 MauroDonega  
PNGpng sideband_model_bfmass_8TeV_diff.png r1 manage 64.5 K 2014-09-24 - 10:06 MauroDonega  
PDFpdf tab1.pdf r1 manage 63.1 K 2014-11-03 - 13:52 MauroDonega  
PNGpng tab1.png r1 manage 91.9 K 2014-11-03 - 13:54 MauroDonega  
PDFpdf tab10.pdf r1 manage 24.4 K 2014-11-03 - 14:24 MauroDonega  
PNGpng tab10.png r1 manage 36.4 K 2014-11-03 - 14:24 MauroDonega  
PDFpdf tab11.pdf r1 manage 15.0 K 2014-11-03 - 14:24 MauroDonega  
PNGpng tab11.png r1 manage 20.0 K 2014-11-03 - 14:24 MauroDonega  
PDFpdf tab2.pdf r1 manage 114.6 K 2014-11-03 - 13:54 MauroDonega  
PNGpng tab2.png r1 manage 183.1 K 2014-11-03 - 13:54 MauroDonega  
PDFpdf tab3.pdf r1 manage 162.8 K 2014-11-03 - 13:47 MauroDonega  
PNGpng tab3.png r1 manage 230.5 K 2014-11-03 - 13:47 MauroDonega  
PDFpdf tab4.pdf r1 manage 22.4 K 2014-11-03 - 13:47 MauroDonega  
PNGpng tab4.png r1 manage 30.4 K 2014-11-03 - 13:47 MauroDonega  
PDFpdf tab5.pdf r1 manage 14.6 K 2014-11-03 - 13:47 MauroDonega  
PNGpng tab5.png r1 manage 21.4 K 2014-11-03 - 13:56 MauroDonega  
PDFpdf tab6.pdf r1 manage 18.7 K 2014-11-03 - 14:03 MauroDonega  
PNGpng tab6.png r1 manage 29.9 K 2014-11-03 - 14:03 MauroDonega  
PDFpdf tab7.pdf r1 manage 29.7 K 2014-11-03 - 13:56 MauroDonega  
PNGpng tab7.png r1 manage 44.6 K 2014-11-03 - 13:56 MauroDonega  
PDFpdf tab8.pdf r1 manage 30.6 K 2014-11-03 - 13:56 MauroDonega  
PNGpng tab8.png r1 manage 47.4 K 2014-11-03 - 13:56 MauroDonega  
PDFpdf tab9.pdf r1 manage 13.9 K 2014-11-03 - 14:30 MauroDonega  
PNGpng tab9.png r1 manage 20.2 K 2014-11-03 - 14:30 MauroDonega  
PDFpdf turnon_nvtx.pdf r1 manage 135.9 K 2014-11-26 - 10:26 MauroDonega  
PNGpng turnon_nvtx.png r1 manage 86.6 K 2014-10-31 - 11:51 PasqualeMusella  
PDFpdf turnon_pt.pdf r1 manage 132.0 K 2014-11-26 - 10:28 MauroDonega  
PNGpng turnon_pt.png r1 manage 80.5 K 2014-10-31 - 11:51 PasqualeMusella  
Edit | Attach | Watch | Print version | History: r3 < r2 < r1 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r3 - 2014-11-26 - MauroDonega
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CMSPublic All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback