Search for the standard-model Higgs boson decaying to $\tau\tau$ in non VH channels

This is a condensed description with plots for the analysis CMS-HIG-13-004

Table of contents:

Abstract

A search for the standard model Higgs boson decaying into a pair of $\tau$ leptons is performed using events recorded by the CMS experiment at the LHC in 2011 and 2012. The dataset corresponds to an integrated luminosity of 4.9 $fb^{-1}$ at a centre-of-mass energy of 7 TeV and 19.7 $fb^{-1}$ at 8 TeV. Each $\tau$ lepton can decay hadronically or leptonically to an electron or a muon, leading to six different final states for the $\tau$ pair, all considered in the analysis. An excess of events is observed over the expected background contributions, with a local significance larger than 3 standard deviations for $m_H$ values between 110 and 130 GeV. The best-fit signal strength relative to the $\sigma * BR(H\rightarrow\tau\tau)$ for the production and decay of a standard model Higgs boson of mass $m_H$=125 GeV is $\hat\mu$ = 0.87 0.29, indicating good compatibility between this excess and the rate expected for the standard model Higgs boson.

Nota Bene

In this TWiki, only the non-VH channels, $\mu\tau$, $e\tau$, $\tau\tau$, $e\mu$, $\mu\mu$, $ee$ are presented.

Main Results

Tables

Table 1: Combined observed 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$, together with the expected limit obtained in the background hypothesis and the one- and two standard- deviation probability intervals around the expected limit. This result corresponds to Fig. 25a and includes the search for a SM Higgs boson decaying into $\tau\tau$.

SM Higgs Expected Limit - Background Only
$m_H$ -95% -68% Median -68% +95% Obs. Limit [pb]
90 0.54 0.728 1.03 1.47 2.02 0.798
95 0.544 0.733 1.04 1.49 2.06 1.21
100 0.507 0.680 0.965 1.38 1.91 1.66
105 0.423 0.572 0.809 1.16 1.60 1.57
110 0.331 0.450 0.639 0.926 1.29 1.52
115 0.309 0.416 0.592 0.849 1.18 1.53
120 0.292 0.394 0.561 0.804 1.12 1.42
125 0.287 0.387 0.549 0.787 1.09 1.38
130 0.305 0.411 0.580 0.834 1.15 1.41
135 0.358 0.481 0.682 0.972 1.35 1.42
140 0.426 0.574 0.816 1.16 1.60 1.38
145 0.562 0.757 1.07 1.53 2.10 1.56

Table 2: Main systematic uncertainties entering the analysis.

Uncertainty Affected Processes Change in acceptance
Tau energy scale signal & sim. backgrounds shape
$e$ misidentified as $\tau$ $Z\rightarrow ee$ 20-74%
$\mu$ misidentified as $\tau$ $Z\rightarrow \mu\mu$ 30%
Jet misidentified as $\tau$ $Z$+jets 20-80%
Electron ID & trigger signal & sim. backgrounds 2-6%
Muon ID & trigger signal & sim. backgrounds 2-4%
Electron energy scale signal & sim. backgrounds shape
Jet energy scale signal & sim. backgrounds 0-20%
MET scale signal & sim. backgrounds 1-12%
Eff. $b$-jets signal & sim. backgrounds 0-8%
Eff. light-flavoured jets signal & sim. backgrounds 1-3%
Norm. $Z$ production $Z$ 3%
$Z\rightarrow \tau\tau$ category $Z\rightarrow \tau\tau$ 2-14%
Norm. $W$+jets $W$+jets 10-100%
Norm. $t\bar t$ $t\bar t$ 8-35%
Norm. di-boson di-boson 15%-45%
Norm. QCD multijet QCD multijet 6-70%
Shape QCD multijet QCD multijet shape
Luminosity 7 TeV (8 TeV) signal & sim. backgrounds 2.2% (2.6%)
PDF (qq) signal & sim. backgrounds 4%
PDF (gg) signal & sim. backgrounds 10%
Scale variation signal 3-41%
Underlying event & parton shower signal 2-10%
Limited number of events all shape bin-by-bin

Table 3: Observed and expected event yields in the $\mu\tau$ channel.

Event category ggH VBF VH tot Signal tot. Background Data S/(S+B) H125 width [GeV]
0-jet low $p_T^{\tau}$ 7 TeV 21.9 0.2 0.1 22.3 3.3 11969 716 11959 0.002 17.4
0-jet low $p_T^{\tau}$ 8 TeV 82.9 0.8 0.4 84.1 11.6 40839 2316 40353 0.003 16.2
0-jet high $p_T^{\tau}$ 7 TeV 16.6 0.2 0.2 17.0 2.5 1595 95 1594 0.021 15.1
0-jet high $p_T^{\tau}$ 8 TeV 65.4 0.7 0.7 66.8 9.3 6000 302 5789 0.020 15.2
1-jet low $p_T^{\tau}$ 7 TeV 8.7 1.6 0.8 11.0 1.6 2021 133 2047 0.012 18.8
1-jet low $p_T^{\tau}$ 8 TeV 36.0 6.2 3.1 45.3 6.0 9035 430 9010 0.010 18.6
1-jet high $p_T^{\tau}$ 7 TeV 7.3 1.1 0.6 9.0 1.2 796 45 817 0.032 19.1
1-jet high $p_T^{\tau}$ 8 TeV 29.6 4.4 2.5 36.5 4.7 3182 153 3160 0.029 19.7
1-jet high $p_T^{\tau}$, higgs boosted 7 TeV 2.4 0.7 0.5 3.6 0.6 282 19 269 0.052 17.7
1-jet high $p_T^{\tau}$, higgs boosted 8 TeV 11.3 3.0 2.1 16.5 2.6 1264 73 1253 0.071 17.2
VBF tag 7 TeV 0.2 1.3 - 1.5 0.2 22 2 23 0.14 19.6
loose VBF tag 8 TeV 1.2 3.5 - 4.7 0.4 80 7 76 0.18 17.0
tight VBF tag 8 TeV 0.4 2.1 - 2.5 0.2 15 2 20 0.51 18.1

Table 4: Observed and expected event yields in the $e\tau$ channel.

Event category ggH VBF VH tot Signal tot. Background Data S/(S+B) H125 width [GeV]
0-jet low $p_T^{\tau}$ 7 TeV 11.7 0.1 0.1 11.9 1.8 6153 368 6238 0.002 16.4
0-jet low $p_T^{\tau}$ 8 TeV 35.0 0.4 0.2 35.6 4.9 16825 879 17109 0.003 15.8
0-jet high $p_T^{\tau}$ 7 TeV 11.0 0.1 0.1 11.2 1.7 1169 69 1191 0.015 14.3
0-jet high $p_T^{\tau}$ 8 TeV 32.7 0.3 0.3 33.4 4.7 4393 194 4536 0.010 15.4
1-jet low $p_T^{\tau}$ 7 TeV 3.1 0.6 0.3 4.0 0.6 368 27 385 0.028 19.6
1-jet low $p_T^{\tau}$ 8 TeV 9.6 1.9 1.1 12.6 1.7 1208 64 1214 0.026 16.5
1-jet high $p_T^{\tau}$, higgs boosted 7 TeV 1.2 0.3 0.2 1.8 0.3 151 10 167 0.088 15.4
1-jet high $p_T^{\tau}$, higgs boosted 8 TeV 5.4 1.5 1.0 7.9 1.2 500 30 476 0.11 15.5
VBF tag 7 TeV 0.2 0.7 - 0.9 0.1 14 2 13 0.23 15.9
loose VBF tag 8 TeV 0.6 1.8 - 2.5 0.2 45 4 40 0.15 16.8
tight VBF tag 8 TeV 0.3 1.3 - 1.6 0.1 9 1 7 0.52 16.1

Table 5: Observed and expected event yields in the $\tau\tau$ channel.

Event category ggH VBF VH tot Signal tot. Background Data S/(S+B) H125 width [GeV]
1-jet boost 8 TeV 7.3 2.1 1.0 10.4 1.7 1130 56 1120 0.055 15.2
1-jet large-boost 8 TeV 5.6 1.6 1.2 8.4 1.2 375 26 366 0.14 13.1
VBF tag 8 TeV 0.5 2.5 - 3.1 0.3 29 4 34 0.33 14.3

Table 6: Observed and expected event yields in the $e\mu$ channel.

Event category ggH VBF VH tot Signal tot. Background Data S/(S+B) H125 width [GeV]
0-jet low $p_T^{\mu}$ 7 TeV 21.4 0.2 0.2 21.8 3.1 11320 324 11283 0.002 24.4
0-jet low $p_T^{\mu}$ 8 TeV 72.3 0.7 0.7 73.7 9.9 40496 1085 40381 0.002 23.6
0-jet high $p_T^{\mu}$ 7 TeV 7.8 0.1 0.1 8.0 1.1 1638 60 1676 0.007 22.7
0-jet high $p_T^{\mu}$ 8 TeV 24.6 0.2 0.5 25.4 3.4 6005 178 6095 0.006 20.7
1-jet low $p_T^{\mu}$ 7 TeV 8.6 1.6 1.0 11.2 1.4 2470 83 2482 0.007 23.7
1-jet low $p_T^{\mu}$ 8 TeV 40.4 6.5 3.7 50.6 6.1 10910 299 10926 0.006 23.8
1-jet high $p_T^{\mu}$ 7 TeV 4.4 1.0 0.6 6.0 0.8 918 39 901 0.012 23.4
1-jet high $p_T^{\mu}$ 8 TeV 18.1 3.4 2.6 24.0 3.0 4039 120 4050 0.011 23.1
VBF tag 7 TeV 0.2 0.9 - 1.1 0.1 18 1 12 0.10 22.8
loose VBF tag 8 TeV 0.6 2.6 - 3.2 0.3 97 6 112 0.050 23.5
tight VBF tag 8 TeV 0.2 1.4 - 1.6 0.1 14 1 17 0.18 17.9

Table 7: Observed and expected event yields in the $\mu\mu$ channel.

Event category ggH VBF VH tot Signal tot. Background Data
0-jet low $p_T^{\mu}$ 7 TeV 8.0 0.1 0.1 8.1 1.2 266328 1344 266365
0-jet low $p_T^{\mu}$ 8 TeV 25.2 0.3 0.6 26.2 3.8 872371 2472 873709
0-jet high $p_T^{\mu}$ 7 TeV 5.5 0.1 0.3 5.9 0.8 982917 2136 982442
0-jet high $p_T^{\mu}$ 8 TeV 30.4 0.4 3.5 34.4 4.6 3775756 3164 3776365
1-jet low $p_T^{\mu}$ 7 TeV 2.5 0.4 0.3 3.3 0.4 18689 182 18757
1-jet low $p_T^{\mu}$ 8 TeV 7.0 1.0 0.6 8.5 1.1 40906 371 40606
1-jet high $p_T^{\mu}$ 7 TeV 3.7 1.4 1.9 7.0 0.6 233682 1254 234390
1-jet high $p_T^{\mu}$ 8 TeV 15.0 2.2 4.4 21.6 2.3 646286 2655 646549
2-jet 7 TeV 1.4 0.2 0.7 2.4 0.3 33293 360 33186
2-jet 8 TeV 6.3 3.9 2.6 12.8 1.4 164422 1480 164469

Table 8: Observed and expected event yields in the $ee$ channel.

Event category ggH VBF VH tot Signal tot. Background Data
0-jet low $p_T^{e}$ 7 TeV 3.6 0.0 0.1 3.7 0.5 190990 965 190890
0-jet low $p_T^{e}$ 8 TeV 14.1 0.2 0.3 14.5 2.2 519423 932 519376
0-jet high $p_T^{e}$ 7 TeV 3.9 0.0 0.5 4.4 0.6 819965 1781 820035
0-jet high $p_T^{e}$ 8 TeV 22.0 0.3 2.4 24.8 3.4 3225021 2061 3225144
1-jet low $p_T^{e}$ 7 TeV 1.5 0.2 0.1 1.8 0.2 10284 101 10300
1-jet low $p_T^{e}$ 8 TeV 4.6 0.6 0.3 5.5 0.7 26557 182 26604
1-jet high $p_T^{e}$ 7 TeV 2.4 0.4 0.6 3.3 0.4 144905 732 144945
1-jet high $p_T^{e}$ 8 TeV 11.6 1.9 3.2 16.7 1.8 560110 1948 560104
2-jet 7 TeV 1.6 0.6 0.4 2.6 0.4 35801 282 35796
2-jet 8 TeV 5.0 2.7 1.6 9.4 1.1 140146 1302 140070

Table 9: Significance and p-value

SM Higgs Significance p-value
$m_H$ Expected Observed Expected Observed
90 1.92 0 0.0276 -
95 1.92 0 0.0272 -
100 2.09 1.79 0.0181 0.0366
105 2.49 2.40 0.00638 0.00818
110 3.19 3.25 0.000722 0.000575
115 3.40 3.59 0.000331 0.000162
120 3.57 3.54 0.000178 0.000202
125 3.60 3.38 0.000157 0.000365
130 3.41 3.14 0.000323 0.000844
135 2.92 2.48 0.00176 0.00659
140 2.45 1.68 0.00717 0.0466
145 1.88 1.14 0.0301 0.128

Figures from CMS-HIG-13-004

png pdf Figure 1: Observed and predicted distributions in the 2012 analysis for the visible $\tau$ mass, in the $\mu\tau$ channel after the baseline selection. The normalization of the predicted distributions corresponds to the final result of the analysis. The simulated contribution from the production of a Z boson decaying into a pair of $\tau$ leptons ($Z\rightarrow\tau\tau$) is split according to the decay mode reconstructed by the hadron-plus-strips algorithm. One can distinguish the $\tau$ built from one charged hadron and photons that are reconstructed with the mass of the intermediate rho resonance and the ones built from three charged hadrons that are reconstructed with the mass of the intermediate $a_1$(1260) resonance. The $\tau$ built from one charged hadron and no photons are reconstructed with the charged pion mass, assigned to all charged hadrons by the PF algorithm, and constitute the main contribution to the third bin of this histogram. The first two bins correspond to $\tau$ leptons decaying into $e \nu_e \nu_{\tau}$ and $\mu \nu_{\mu} \nu_{\tau}$, respectively, and for which the electron or muon is misidentified as a $\tau$. The electroweak background contribution is dominated by $W$+jets production. In most selected $W$+jets, $t\bar t$ and QCD multijet events, a jet is misidentified as a $\tau$. The background uncertainty band represents the combined statistical and systematic uncertainty in the background yield in each bin. Given the inclusive nature of the selection used, the expected contribution from the SM Higgs signal is negligible.
png pdf Figure 2: Observed and predicted distributions in the 2012 analysis for the transverse momentum of the $\tau$ in the $\mu\tau$ channel after the baseline selection . The normalization of the predicted distributions corresponds to the final result of the analysis. The electroweak background contribution includes events from $W$+jets, diboson, and single-top production. The background uncertainty band represents the combined statistical and systematic uncertainty in the background yield in each bin. Given the inclusive nature of the selection used, the expected contribution from the SM Higgs signal is negligible.
png pdf Figure 3: Observed and predicted distributions in the 2012 analysis for the transverse momentum of the Higgs boson candidate in the mu-tau channel. The transverse momentum of the Higgs boson candidate is defined as the scalar magnitude of the vector sum of the di-tau pair transverse momentum and the MET. The normalization of the predicted distributions corresponds to the final result of the analysis. The background uncertainty band represents the combined statistical and systematic uncertainty in the background yield in each bin. Given the inclusive nature of the selection used, the expected contribution from the SM Higgs signal is negligible.
png pdf Figure 4: Observed and predicted distributions in the 2012 analysis for the transverse mass in the mu-tau channel. The baseline cut used to suppress $W$+jets background requires transverse mass less than 30 GeV, whereas the sideband defined by transverse mass larger than 70 GeV is used to normalize the $W$+jets background, separately in each category of each channel.
png pdf Figure 5: Observed and predicted distributions in the 2012 analysis for the number of jets in the $e\mu$ channel. The normalization of the predicted distributions corresponds to the final result of the analysis. The background uncertainty band represents the combined statistical and systematic uncertainty in the background yield in each bin. Given the inclusive nature of the selection used, the expected contribution from the SM Higgs signal is negligible.
png pdf Figure 6: Categories definition for the 8 TeV, 2012, analysis of the six channels. The $p_T^{\tau\tau}$ variable is the transverse momentum of the Higgs boson candidate. In the definition of the VBF-tag categories, $\Delta\eta_{jj}$ is the difference in pseudorapidity between the two highest-$p_T$ jets, and $m_{jj}$ their invariant mass. In the $ee$ and $\mu\mu$ channels, events with two jets are not required to fulfill any additional VBF tagging criteria. For the analysis of the 2011 $e\tau$ and $\mu\tau$ data, the loose and tight VBF-tag categories are merged into a single VBF-tag category. In the $e\tau$ channel, the MET is required to be larger than 30 GeV in the 1-jet category, and the high-$p_T$ category is not used. Categories are mutually exclusive.
png pdf Figure 7a: Normalized distribution of the visible invariant mass mvis obtained from MC simulation in the $\mu\tau$ channel for the $Z\rightarrow\tau\tau$ background (solid histogram) and a SM Higgs boson signal of mass $m_H$ = 125 GeV (open histogram).
png pdf Figure 7b: Normalized distribution of the SVFit mass $m_{\tau\tau}$ obtained from MC simulation in the $\mu\tau$ channel for the $Z\rightarrow\tau\tau$ background (solid histogram) and a SM Higgs boson signal of mass $m_H$ = 125 GeV (open histogram).

Mass/Final Discriminator Distributions at 8 TeV

png pdf Figure 8: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 1 jet, high $p_T^{e}$ category.
png pdf Figure 9: Expected and observed final discriminator D distributions in the $ee$ channel, and the 2 jets category.
png pdf Figure 10: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 1 jet, high $p_T^{\mu}$ category.
png pdf Figure 11: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 2 jets category.
png pdf Figure 12: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 1 jet, high $p_T^{\tau}$ category.
png pdf Figure 13: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the loose VBF category.
png pdf Figure 14: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the tight VBF category.
png pdf Figure 15: Expected and observed SFVfit mass distributions in the $\tau\tau$ channel, and in the 1 jet, medium $p_T^{\tau\tau}$ category.
png pdf Figure 16: Expected and observed SFVfit mass distributions in the $\tau\tau$ channel, and in the 1 jet, high $p_T^{\tau\tau}$ category.
png pdf Figure 17: Expected and observed SFVfit mass distributions in the $\tau\tau$ channel, and in the VBF category.
png pdf Figure 18: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 1 jet, high $p_T^{\tau}$, medium $p_T^{\tau\tau}$ category.
png pdf Figure 19: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the loose VBF category.
png pdf Figure 20: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the tight VBF category.
png pdf Figure 21: Expected and observed SFVfit mass distributions in the mu-tau channel, and in the 1 jet, high $p_T^{\tau}$, medium $p_T^{\tau\tau}$ category.
png pdf Figure 22: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the loose VBF category.
png pdf Figure 23: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the tight VBF category.

Results

png pdf Figure 24: Combined observed and predicted di-tau mass distributions for the $\mu\tau$, $e\tau$, $e\mu$ and $\tau\tau$ channels. The normalization of the predicted background distributions corresponds to the result of the global fit. The signal distribution, on the other hand, is normalized to the standard model prediction ($\mu = 1$). The distributions obtained in each category of each channel are weighted by the ratio between the expected signal and signal-plus-background yields in the category. The inset shows the corresponding difference between the observed data and ex- pected background distributions, together with the signal distribution for a SM Higgs boson at $m_H$ = 125 GeV, focussing on the signal region.
png pdf Figure 25a: Combined observed 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$, together with the expected limit obtained in the background hypothesis. The bands show the expected one- and two-standard-deviation probability intervals around the expected limit.
png pdf Figure 25b: Combined observed 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$, together with the expected limit obtained in the signal-plus-background hypothesis for a SM Higgs boson with $m_H$ = 125 GeV. The bands show the expected one- and two-standard-deviation probability intervals around the expected limit.
png pdf Figure 26: Observed and expected local p-value, and observed significance in number of standard deviations. Dashed blue line represents the expeted p-value for any given $m_H$ hypothesis.
png pdf Figure 27a: Best-fit signal strength values, for independent channels, with $m_H$ = 125 GeV. The combined value for the $H\rightarrow\tau\tau$ analysis in both plots corresponds to $\mu$ = 0.87 0.29, obtained in the global fit combining all categories of all channels.
png pdf Figure 27b: Best-fit signal strength values, for independent categories, with $m_H$ = 125 GeV. The combined value for the $H\rightarrow\tau\tau$ analysis in both plots corresponds to $\mu$ = 0.87 0.29, obtained in the global fit combining all categories of all channels.
png pdf Figure 28a: Likelihood scans as a function of $\mu$ and $m_H$. For each point, all nuisance parameters are profiled.
png pdf Figure 30: Likelihood scans as a function of $k_V$ and $k_f$. For each point, all nuisance parameters are profiled. $H\rightarrow WW$ contribution is considered as part of the signal

Table 10: Each row in the table reports the ($k_V$, $k_f$) coordinates of each point, for which the likelihood scan is performed, defining the 68% and 95% CL contours, as shown in Fig. 30. Signal is assumed to be at $m_H$ = 125 GeV and $H\rightarrow WW$ contribution is considered as part of the signal.

68% CL contour 95% CL contour
$k_V$ $k_f$ $k_V$ $k_f$
1.32500e+00 1.05036e+00 1.37500e+00 1.21256e+00
1.27500e+00 1.05854e+00 1.35760e+00 1.21667e+00
1.22500e+00 1.06096e+00 1.32500e+00 1.22394e+00
1.17500e+00 1.05744e+00 1.27500e+00 1.23168e+00
1.13655e+00 1.05000e+00 1.22500e+00 1.23592e+00
1.12500e+00 1.04740e+00 1.17500e+00 1.23652e+00
1.07500e+00 1.02891e+00 1.12500e+00 1.23338e+00
1.05139e+00 1.01667e+00 1.07500e+00 1.22637e+00
1.02500e+00 1.00034e+00 1.03093e+00 1.21667e+00
1.00351e+00 9.83333e-01 1.02500e+00 1.21523e+00
9.75000e-01 9.55721e-01 9.75000e-01 1.19880e+00
9.70121e-01 9.50000e-01 9.38143e-01 1.18333e+00
9.47426e-01 9.16667e-01 9.25000e-01 1.17719e+00
9.30384e-01 8.83333e-01 8.76951e-01 1.15000e+00
9.25000e-01 8.68275e-01 8.75000e-01 1.14876e+00
9.19363e-01 8.50000e-01 8.31912e-01 1.11667e+00
9.13194e-01 8.16667e-01 8.25000e-01 1.11080e+00
9.10884e-01 7.83333e-01 7.96635e-01 1.08333e+00
9.12238e-01 7.50000e-01 7.75000e-01 1.05907e+00
9.17147e-01 7.16667e-01 7.67775e-01 1.05000e+00
9.25000e-01 6.85622e-01 7.45046e-01 1.01667e+00
9.25676e-01 6.83333e-01 7.26138e-01 9.83333e-01
9.39705e-01 6.50000e-01 7.25000e-01 9.80885e-01
9.58404e-01 6.16667e-01 7.11950e-01 9.50000e-01
9.75000e-01 5.93499e-01 7.00882e-01 9.16667e-01
9.84167e-01 5.83333e-01 6.92634e-01 8.83333e-01
1.02207e+00 5.50000e-01 6.86982e-01 8.50000e-01
1.02500e+00 5.47896e-01 6.83746e-01 8.16667e-01
1.07500e+00 5.22573e-01 6.82714e-01 7.83333e-01
1.09484e+00 5.16667e-01 6.83657e-01 7.50000e-01
1.12500e+00 5.09272e-01 6.86385e-01 7.16667e-01
1.17500e+00 5.04823e-01 6.90832e-01 6.83333e-01
1.22500e+00 5.07314e-01 6.96924e-01 6.50000e-01
1.27500e+00 5.15781e-01 7.04581e-01 6.16667e-01
1.27809e+00 5.16667e-01 7.13806e-01 5.83333e-01
1.32500e+00 5.31113e-01 7.24689e-01 5.50000e-01
1.37076e+00 5.50000e-01 7.25000e-01 5.49167e-01
1.37500e+00 5.51912e-01 7.38645e-01 5.16667e-01
1.42500e+00 5.80623e-01 7.55138e-01 4.83333e-01
1.42891e+00 5.83333e-01 7.74740e-01 4.50000e-01
1.47187e+00 6.16667e-01 7.75000e-01 4.49614e-01
1.47500e+00 6.19462e-01 8.01442e-01 4.16667e-01
1.50376e+00 6.50000e-01 8.25000e-01 3.92483e-01
1.52500e+00 6.76785e-01 8.36150e-01 3.83333e-01
1.52946e+00 6.83333e-01 8.75000e-01 3.56645e-01
1.54697e+00 7.16667e-01 8.88058e-01 3.50000e-01
1.55927e+00 7.50000e-01 9.25000e-01 3.33867e-01
1.56595e+00 7.83333e-01 9.75000e-01 3.19532e-01
1.56671e+00 8.16667e-01 9.92388e-01 3.16667e-01
1.56138e+00 8.50000e-01 1.02500e+00 3.11851e-01
1.54991e+00 8.83333e-01 1.07500e+00 3.09375e-01
1.53239e+00 9.16667e-01 1.12500e+00 3.11284e-01
1.52500e+00 9.27174e-01 1.17124e+00 3.16667e-01
1.50563e+00 9.50000e-01 1.17500e+00 3.17100e-01
1.47500e+00 9.79232e-01 1.22500e+00 3.26704e-01
1.46965e+00 9.83333e-01 1.27500e+00 3.39595e-01
1.42500e+00 1.01237e+00 1.30720e+00 3.50000e-01
1.41639e+00 1.01667e+00 1.32500e+00 3.55778e-01
1.37500e+00 1.03478e+00 1.37500e+00 3.75325e-01
1.32629e+00 1.05000e+00 1.39258e+00 3.83333e-01
1.32500e+00 1.05036e+00 1.42500e+00 3.98383e-01
1.45959e+00 4.16667e-01
1.47500e+00 4.25074e-01
1.51554e+00 4.50000e-01
1.52500e+00 4.56076e-01
1.56297e+00 4.83333e-01
1.57500e+00 4.92477e-01
1.60370e+00 5.16667e-01
1.62500e+00 5.35945e-01
1.63910e+00 5.50000e-01
1.66965e+00 5.83333e-01
1.67500e+00 5.89894e-01
1.69487e+00 6.16667e-01
1.71647e+00 6.50000e-01
1.72500e+00 6.65712e-01
1.73372e+00 6.83333e-01
1.74678e+00 7.16667e-01
1.75632e+00 7.50000e-01
1.76219e+00 7.83333e-01
1.76424e+00 8.16667e-01
1.76238e+00 8.50000e-01
1.75659e+00 8.83333e-01
1.74688e+00 9.16667e-01
1.73328e+00 9.50000e-01
1.72500e+00 9.65914e-01
1.71486e+00 9.83333e-01
1.69141e+00 1.01667e+00
1.67500e+00 1.03668e+00
1.66272e+00 1.05000e+00
1.62792e+00 1.08333e+00
1.62500e+00 1.08585e+00
1.58448e+00 1.11667e+00
1.57500e+00 1.12327e+00
1.53109e+00 1.15000e+00
1.52500e+00 1.15344e+00
1.47500e+00 1.17767e+00
1.46107e+00 1.18333e+00
1.42500e+00 1.19706e+00
1.37500e+00 1.21256e+00

Additional Material

png pdf Figure 32a: Expected 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$ in the background only hypothesis, shown separately for the six channels.
png pdf Figure 32b: Expected 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$ in the background only hypothesis, shown separately for 0-Jet, 1-Jet, VBF categories.
png pdf Figure 34a: Distribution of $\log(S/(S+B))$, with the signal yield $S$ and background yield $B$ taken from each bin in each event category. All the channels except for the VH final state is combined. The first bin also includes the underflow. The normalization of the predicted background distributions corresponds to the result of the global fit. The signal distribution, on the other hand, is normalized to the standard model prediction ($\mu = 1$). The inset shows the corresponding difference between the observed data and expected background distributions, together with the expected signal distribution for a standard-model Higgs signal at $m_H$ = 125 GeV.
png pdf Figure 34b: Distribution of $\log(S/(S+B))$, with the signal yield $S$ and background yield $B$ taken from each bin in each event category. All the channels are combined. The first bin also includes the underflow. The normalization of the predicted background distributions corresponds to the result of the global fit. The signal distribution, on the other hand, is normalized to the standard model prediction ($\mu = 1$). The contributions from the six different channels are shown in different colors. The inset shows the corresponding difference between the observed data and expected background distributions, together with the expected signal distribution for a standard-model Higgs signal at $m_H$ = 125 GeV.
png pdf Figure 34c: Distribution of $\log(S/(S+B))$, with the signal yield $S$ and background yield $B$ taken from each bin in each event category. All the channels are combined. The first bin also includes the underflow. The normalization of the predicted background distributions corresponds to the result of the global fit. The signal distribution, on the other hand, is normalized to the standard model prediction ($\mu = 1$). The contributions from the three different categories, 0-Jet, 1-Jet and VBF are shown in different colors. The inset shows the corresponding difference between the observed data and expected background distributions, together with the expected signal distribution for a standard-model Higgs signal at $m_H$ = 125 GeV.
png pdf Figure 31: Combined observed 95% CL upper limit on the signal strength parameter $\mu = \sigma/\sigma_{SM}$, together with the expected limit obtained in the background only hypothesis, where the SM Higgs boson with $m_H$ = 125 GeV is included as part of the background. The bands show the expected one- and two-standard-deviation probability intervals around the expected limit.
png pdf Figure 29: Best-fit signal strength values, for independent categories from different channels, with $m_H$ = 125 GeV. The combined value for the $H\rightarrow\tau\tau$ analysis in both plots corresponds to $\mu$ = 0.87 0.29, obtained in the global fit combining all categories of all channels. This plot assesses the compatibility of $\mu$ values as measured in different channels/categories. All categories in all channels are simultaneously fit so that inter-category correlations for background constraints are preserved. The signal strength is measured separately in each category of each channel.
png pdf Figure 28b: Likelihood scans as a function of $m_H$. For each point, all nuisance parameters are profiled.

Event Display

png (black background) Figure 35: 3D view of a candidate HTauTau VBF event in the $\mu\tau$ channel, recorded by CMS during 2012. The muon, represented by the red line on the left with hits visible in the endcap muon chambers, has a $p_T$ of 23.4 GeV. The hadronically-decaying $\tau$ candidate, indicated by the two large blue towers in the center of this figure, has a $p_T$ of 39.3 GeV. The di-tau mass, calculated using the svfit algorithm, is 102.0 GeV. The two jets passing the VBF selection, indicated by the large green towers in the two opposite-side endcaps, have $p_T$ 77.6 and 75.4 GeV, are separated in eta by 5.8 and have a mass of 1.4 TeV. There are no additional jets in the eta range between these tagging jets with a $p_T$ above 30 GeV.

Additional Mass Distributions

Mass Distributions at 8 TeV

png pdf Figure 36: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 0 jet, low $p_T^{e}$ category.
png pdf Figure 37: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 0 jet, high $p_T^{e}$ category.
png pdf Figure 38: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 1 jet, low $p_T^{e}$ category.
png pdf Figure 39: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 0 jet, low $p_T^{\mu}$ category.
png pdf Figure 30: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 0 jet, high $p_T^{\mu}$ category.
png pdf Figure 41: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 1 jet, low $p_T^{\mu}$ category.
png pdf Figure 42: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 0 jet, medium $p_T^{\mu}$ category.
png pdf Figure 43: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 0 jet, high $p_T^{\mu}$ category.
png pdf Figure 44: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 1 jet, medium $p_T^{\mu}$ category.
png pdf Figure 45: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 0 jet, medium $p_T^{\tau}$ category.
png pdf Figure 46: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 0 jet, high $p_T^{\tau}$ category.
png pdf Figure 47: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 1 jet, medium $p_T^{\tau}$ category.
png pdf Figure 48: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 0 jet, medium $p_T^{\tau}$ category.
png pdf Figure 49: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 0 jet, high $p_T^{\tau}$ category.
png pdf Figure 50: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 1 jet, medium $p_T^{\tau}$ category.
png pdf Figure 51: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 1 jet, high $p_T^{\tau}$, low $p_T^{\tau\tau}$ category.

Mass Distributions at 7 TeV

png pdf Figure 52: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 0 jet, low $p_T^{e}$ category.
png pdf Figure 53: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 0 jet, high $p_T^{e}$ category.
png pdf Figure 54: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 1 jet, low $p_T^{e}$ category.
png pdf Figure 55: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 1 jet, high $p_T^{e}$ category.
png pdf Figure 56: Expected and observed final discriminator D distributions in the $ee$ channel, and in the 2 jets category.
png pdf Figure 57: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 0 jet, low $p_T^{\mu}$ category.
png pdf Figure 58: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 0 jet, high $p_T^{\mu}$ category.
png pdf Figure 59: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 1 jet, low $p_T^{\mu}$ category.
png pdf Figure 60: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 1 jet, high $p_T^{\mu}$ category.
png pdf Figure 61: Expected and observed final discriminator D distributions in the $\mu\mu$ channel, and in the 2 jets category.
png pdf Figure 62: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 0 jet, low $p_T^{\mu}$ category.
png pdf Figure 63: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 0 jet, high $p_T^{\mu}$ category.
png pdf Figure 64: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 1 jet, low $p_T^{\mu}$ category.
png pdf Figure 65: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the 1 jet, high $p_T^{\mu}$ category.
png pdf Figure 66: Expected and observed SFVfit mass distributions in the $e\mu$ channel, and in the VBF category.
png pdf Figure 67: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 0 jet, medium $p_T^{\tau}$ category.
png pdf Figure 68: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 0 jet, high $p_T^{\tau}$ category.
png pdf Figure 69: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 1 jet, medium $p_T^{\tau}$ category.
png pdf Figure 70: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the 1 jet, high $p_T^{\tau}$, medium $p_T^{\tau\tau}$ category.
png pdf Figure 71: Expected and observed SFVfit mass distributions in the $e\tau$ channel, and in the VBF category
png pdf Figure 72: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 0 jet, medium $p_T^{\tau}$ category.
png pdf Figure 73: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 0 jet, high $p_T^{\tau}$ category.
png pdf Figure 74: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 1 jet, medium $p_T^{\tau}$ category.
png pdf Figure 75: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 1 jet, high $p_T^{\tau}$, low $p_T^{\tau\tau}$ category.
png pdf Figure 76: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the 1 jet, high $p_T^{\tau}$, medium $p_T^{\tau\tau}$ category.
png pdf Figure 77: Expected and observed SFVfit mass distributions in the $\mu\tau$ channel, and in the VBF category

Topic attachments
I Attachment History Action Size Date Who Comment
PDFpdf BestFit_sm_per_cat.pdf r2 r1 manage 13.5 K 2013-12-03 - 22:41 UnknownUser  
PNGpng BestFit_sm_per_cat.png r2 r1 manage 90.7 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf BestFit_sm_per_chn.pdf r2 r1 manage 13.9 K 2013-12-03 - 22:41 UnknownUser  
PNGpng BestFit_sm_per_chn.png r2 r1 manage 100.2 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf Plot_All_SM.pdf r2 r1 manage 20.5 K 2013-12-02 - 23:21 UnknownUser  
PNGpng Plot_All_SM.png r2 r1 manage 164.8 K 2013-12-02 - 23:21 UnknownUser  
PDFpdf Plot_All_SMSOB.pdf r1 manage 20.5 K 2013-12-02 - 23:21 UnknownUser  
PNGpng Plot_All_SMSOB.png r1 manage 186.5 K 2013-12-02 - 23:21 UnknownUser  
PDFpdf categories_2012.pdf r1 manage 51.4 K 2013-11-29 - 17:00 UnknownUser  
PNGpng categories_2012.png r1 manage 229.6 K 2013-11-29 - 17:00 UnknownUser  
PDFpdf channel_compatibility.pdf r1 manage 14.9 K 2013-12-04 - 11:17 UnknownUser  
PNGpng channel_compatibility.png r1 manage 162.2 K 2013-12-04 - 11:17 UnknownUser  
PDFpdf cmb-mass_scan.pdf r1 manage 14.8 K 2013-12-03 - 22:56 UnknownUser  
PNGpng cmb-mass_scan.png r1 manage 170.2 K 2013-12-03 - 22:56 UnknownUser  
PDFpdf cmb_limit.pdf r1 manage 15.0 K 2013-12-03 - 22:41 UnknownUser  
PNGpng cmb_limit.png r2 r1 manage 144.5 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf cmb_limit_excl.pdf r2 r1 manage 14.9 K 2013-12-03 - 22:41 UnknownUser  
PNGpng cmb_limit_excl.png r2 r1 manage 143.2 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf cmb_limit_hbkg.pdf r1 manage 33.1 K 2013-12-04 - 11:25 UnknownUser  
PNGpng cmb_limit_hbkg.png r1 manage 140.4 K 2013-12-04 - 11:25 UnknownUser  
PDFpdf cmb_muvmass.pdf r2 r1 manage 14.4 K 2013-12-03 - 22:41 UnknownUser  
PNGpng cmb_muvmass.png r2 r1 manage 112.1 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf cmb_p-value.pdf r4 r3 r2 r1 manage 29.9 K 2013-12-04 - 17:38 UnknownUser  
PNGpng cmb_p-value.png r4 r3 r2 r1 manage 131.6 K 2013-12-04 - 17:38 UnknownUser  
PDFpdf ee_0jet_high_postfit_7TeV_LOG.pdf r1 manage 16.5 K 2013-12-03 - 22:41 UnknownUser  
PNGpng ee_0jet_high_postfit_7TeV_LOG.png r2 r1 manage 122.9 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf ee_0jet_high_postfit_8TeV_LOG.pdf r2 r1 manage 16.6 K 2013-12-03 - 22:41 UnknownUser  
PNGpng ee_0jet_high_postfit_8TeV_LOG.png r2 r1 manage 122.6 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf ee_0jet_low_postfit_7TeV_LOG.pdf r2 r1 manage 16.3 K 2013-12-03 - 22:41 UnknownUser  
PNGpng ee_0jet_low_postfit_7TeV_LOG.png r2 r1 manage 120.5 K 2013-12-03 - 22:24 UnknownUser  
PDFpdf ee_0jet_low_postfit_8TeV_LOG.pdf r2 r1 manage 16.5 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_0jet_low_postfit_8TeV_LOG.png r2 r1 manage 122.5 K 2013-12-04 - 11:00 UnknownUser  
PDFpdf ee_1jet_high_postfit_7TeV_LOG.pdf r2 r1 manage 17.0 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_1jet_high_postfit_7TeV_LOG.png r2 r1 manage 125.3 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf ee_1jet_high_postfit_8TeV_LOG.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_1jet_high_postfit_8TeV_LOG.png r2 r1 manage 125.4 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf ee_1jet_low_postfit_7TeV_LOG.pdf r2 r1 manage 16.2 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_1jet_low_postfit_7TeV_LOG.png r2 r1 manage 118.1 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf ee_1jet_low_postfit_8TeV_LOG.pdf r2 r1 manage 16.1 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_1jet_low_postfit_8TeV_LOG.png r2 r1 manage 118.7 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf ee_vbf_postfit_7TeV_LOG.pdf r2 r1 manage 16.8 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_vbf_postfit_7TeV_LOG.png r2 r1 manage 121.6 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf ee_vbf_postfit_8TeV_LOG.pdf r1 manage 16.7 K 2013-12-03 - 22:42 UnknownUser  
PNGpng ee_vbf_postfit_8TeV_LOG.png r2 r1 manage 120.7 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf eleTau_0jet_high_postfit_7TeV_LIN.pdf r2 r1 manage 17.3 K 2013-12-03 - 22:42 UnknownUser  
PNGpng eleTau_0jet_high_postfit_7TeV_LIN.png r2 r1 manage 134.2 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf eleTau_0jet_high_postfit_8TeV_LIN.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:42 UnknownUser  
PNGpng eleTau_0jet_high_postfit_8TeV_LIN.png r2 r1 manage 128.5 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf eleTau_0jet_medium_postfit_7TeV_LIN.pdf r2 r1 manage 17.5 K 2013-12-03 - 22:42 UnknownUser  
PNGpng eleTau_0jet_medium_postfit_7TeV_LIN.png r2 r1 manage 137.8 K 2013-12-03 - 22:28 UnknownUser  
PDFpdf eleTau_0jet_medium_postfit_8TeV_LIN.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_0jet_medium_postfit_8TeV_LIN.png r2 r1 manage 125.4 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_1jet_high_mediumhiggs_postfit_7TeV_LIN.pdf r2 r1 manage 17.5 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_1jet_high_mediumhiggs_postfit_7TeV_LIN.png r3 r2 r1 manage 125.2 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.pdf r2 r1 manage 17.8 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.png r2 r1 manage 130.2 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_1jet_medium_postfit_7TeV_LIN.pdf r2 r1 manage 17.7 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_1jet_medium_postfit_7TeV_LIN.png r2 r1 manage 129.6 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_1jet_medium_postfit_8TeV_LIN.pdf r2 r1 manage 17.9 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_1jet_medium_postfit_8TeV_LIN.png r2 r1 manage 131.9 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_vbf_loose_postfit_8TeV_LIN.pdf r2 r1 manage 15.8 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_vbf_loose_postfit_8TeV_LIN.png r2 r1 manage 130.5 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_vbf_postfit_7TeV_LIN.pdf r2 r1 manage 15.7 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_vbf_postfit_7TeV_LIN.png r2 r1 manage 134.4 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf eleTau_vbf_tight_postfit_8TeV_LIN.pdf r2 r1 manage 15.4 K 2013-12-03 - 22:43 UnknownUser  
PNGpng eleTau_vbf_tight_postfit_8TeV_LIN.png r2 r1 manage 135.7 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf emu_0jet_high_postfit_7TeV_LIN.pdf r2 r1 manage 17.8 K 2013-12-03 - 22:43 UnknownUser  
PNGpng emu_0jet_high_postfit_7TeV_LIN.png r2 r1 manage 137.7 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf emu_0jet_high_postfit_8TeV_LIN.pdf r2 r1 manage 17.3 K 2013-12-03 - 22:43 UnknownUser  
PNGpng emu_0jet_high_postfit_8TeV_LIN.png r2 r1 manage 134.9 K 2013-12-03 - 22:30 UnknownUser  
PDFpdf emu_0jet_low_postfit_7TeV_LIN.pdf r2 r1 manage 17.3 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_0jet_low_postfit_7TeV_LIN.png r2 r1 manage 131.8 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_0jet_low_postfit_8TeV_LIN.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_0jet_low_postfit_8TeV_LIN.png r2 r1 manage 128.9 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_1jet_high_postfit_7TeV_LIN.pdf r2 r1 manage 18.2 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_1jet_high_postfit_7TeV_LIN.png r2 r1 manage 141.0 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_1jet_high_postfit_8TeV_LIN.pdf r1 manage 18.1 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_1jet_high_postfit_8TeV_LIN.png r2 r1 manage 140.0 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_1jet_low_postfit_7TeV_LIN.pdf r2 r1 manage 17.7 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_1jet_low_postfit_7TeV_LIN.png r2 r1 manage 134.7 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_1jet_low_postfit_8TeV_LIN.pdf r2 r1 manage 17.7 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_1jet_low_postfit_8TeV_LIN.png r2 r1 manage 132.2 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_vbf_loose_postfit_7TeV_LIN.pdf r2 r1 manage 15.9 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_vbf_loose_postfit_7TeV_LIN.png r2 r1 manage 140.4 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_vbf_loose_postfit_8TeV_LIN.pdf r2 r1 manage 16.2 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_vbf_loose_postfit_8TeV_LIN.png r2 r1 manage 131.1 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf emu_vbf_tight_postfit_8TeV_LIN.pdf r2 r1 manage 15.7 K 2013-12-03 - 22:44 UnknownUser  
PNGpng emu_vbf_tight_postfit_8TeV_LIN.png r2 r1 manage 126.8 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf exp_limit_per_category.pdf r1 manage 15.5 K 2013-12-03 - 22:47 UnknownUser  
PNGpng exp_limit_per_category.png r1 manage 161.4 K 2013-12-03 - 22:35 UnknownUser  
PDFpdf exp_limit_per_channel.pdf r2 r1 manage 16.8 K 2013-12-03 - 22:47 UnknownUser  
PNGpng exp_limit_per_channel.png r2 r1 manage 217.8 K 2013-12-03 - 22:35 UnknownUser  
PDFpdf htt-scan-hww-CV-CF-125.pdf r2 r1 manage 15.5 K 2013-12-03 - 22:44 UnknownUser  
PNGpng htt-scan-hww-CV-CF-125.png r2 r1 manage 106.6 K 2013-12-03 - 22:31 UnknownUser  
PDFpdf m_2_byModes_muTau_2012.pdf r2 r1 manage 20.3 K 2013-12-03 - 22:45 UnknownUser  
PNGpng m_2_byModes_muTau_2012.png r2 r1 manage 133.6 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mt_1_muTau_2012.pdf r2 r1 manage 26.5 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mt_1_muTau_2012.png r2 r1 manage 175.5 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf muTau_0jet_high_postfit_7TeV_LIN.pdf r2 r1 manage 17.5 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_0jet_high_postfit_7TeV_LIN.png r3 r2 r1 manage 135.9 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf muTau_0jet_high_postfit_8TeV_LIN.pdf r2 r1 manage 17.0 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_0jet_high_postfit_8TeV_LIN.png r3 r2 r1 manage 133.5 K 2013-12-04 - 11:03 UnknownUser  
PDFpdf muTau_0jet_medium_postfit_7TeV_LIN.pdf r2 r1 manage 17.2 K 2013-12-04 - 11:11 UnknownUser  
PNGpng muTau_0jet_medium_postfit_7TeV_LIN.png r2 r1 manage 135.3 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf muTau_0jet_medium_postfit_8TeV_LIN.pdf r2 r1 manage 17.0 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_0jet_medium_postfit_8TeV_LIN.png r2 r1 manage 129.0 K 2013-12-04 - 11:01 UnknownUser  
PDFpdf muTau_1jet_high_lowhiggs_postfit_7TeV_LIN.pdf r2 r1 manage 17.9 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_1jet_high_lowhiggs_postfit_7TeV_LIN.png r2 r1 manage 136.2 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf muTau_1jet_high_lowhiggs_postfit_8TeV_LIN.pdf r2 r1 manage 17.7 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_1jet_high_lowhiggs_postfit_8TeV_LIN.png r2 r1 manage 133.7 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf muTau_1jet_high_mediumhiggs_postfit_7TeV_LIN.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_1jet_high_mediumhiggs_postfit_7TeV_LIN.png r2 r1 manage 124.3 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf muTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.pdf r2 r1 manage 17.6 K 2013-12-03 - 22:46 UnknownUser  
PNGpng muTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.png r2 r1 manage 133.9 K 2013-12-04 - 10:58 UnknownUser  
PDFpdf muTau_1jet_medium_postfit_7TeV_LIN.pdf r2 r1 manage 17.5 K 2013-12-03 - 22:47 UnknownUser  
PNGpng muTau_1jet_medium_postfit_7TeV_LIN.png r2 r1 manage 131.1 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf muTau_1jet_medium_postfit_8TeV_LIN.pdf r2 r1 manage 17.8 K 2013-12-03 - 22:47 UnknownUser  
PNGpng muTau_1jet_medium_postfit_8TeV_LIN.png r2 r1 manage 142.2 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf muTau_vbf_loose_postfit_8TeV_LIN.pdf r2 r1 manage 16.1 K 2013-12-03 - 22:47 UnknownUser  
PNGpng muTau_vbf_loose_postfit_8TeV_LIN.png r2 r1 manage 136.2 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf muTau_vbf_postfit_7TeV_LIN.pdf r2 r1 manage 15.5 K 2013-12-03 - 22:47 UnknownUser  
PNGpng muTau_vbf_postfit_7TeV_LIN.png r2 r1 manage 131.5 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf muTau_vbf_tight_postfit_8TeV_LIN.pdf r2 r1 manage 15.5 K 2013-12-03 - 22:47 UnknownUser  
PNGpng muTau_vbf_tight_postfit_8TeV_LIN.png r2 r1 manage 124.3 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf mumu_0jet_high_postfit_7TeV_LOG.pdf r2 r1 manage 16.2 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_0jet_high_postfit_7TeV_LOG.png r2 r1 manage 119.0 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_0jet_high_postfit_8TeV_LOG.pdf r2 r1 manage 16.3 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_0jet_high_postfit_8TeV_LOG.png r2 r1 manage 120.8 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_0jet_low_postfit_7TeV_LOG.pdf r2 r1 manage 16.2 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_0jet_low_postfit_7TeV_LOG.png r2 r1 manage 117.9 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_0jet_low_postfit_8TeV_LOG.pdf r2 r1 manage 16.2 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_0jet_low_postfit_8TeV_LOG.png r2 r1 manage 118.1 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_1jet_high_postfit_7TeV_LOG.pdf r2 r1 manage 16.7 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_1jet_high_postfit_7TeV_LOG.png r2 r1 manage 122.8 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_1jet_high_postfit_8TeV_LOG.pdf r2 r1 manage 16.8 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_1jet_high_postfit_8TeV_LOG.png r2 r1 manage 122.1 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_1jet_low_postfit_7TeV_LOG.pdf r2 r1 manage 16.0 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_1jet_low_postfit_7TeV_LOG.png r2 r1 manage 115.9 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_1jet_low_postfit_8TeV_LOG.pdf r2 r1 manage 16.0 K 2013-12-03 - 22:45 UnknownUser  
PNGpng mumu_1jet_low_postfit_8TeV_LOG.png r3 r2 r1 manage 116.5 K 2013-12-03 - 22:32 UnknownUser  
PDFpdf mumu_vbf_postfit_7TeV_LOG.pdf r2 r1 manage 16.4 K 2013-12-03 - 22:46 UnknownUser  
PNGpng mumu_vbf_postfit_7TeV_LOG.png r2 r1 manage 119.1 K 2013-12-04 - 11:10 UnknownUser  
PDFpdf mumu_vbf_postfit_8TeV_LOG.pdf r1 manage 16.7 K 2013-12-03 - 22:46 UnknownUser  
PNGpng mumu_vbf_postfit_8TeV_LOG.png r2 r1 manage 119.1 K 2013-12-04 - 11:12 UnknownUser  
PDFpdf njets_emu_2012_log.pdf r2 r1 manage 17.5 K 2013-12-03 - 22:47 UnknownUser  
PNGpng njets_emu_2012_log.png r2 r1 manage 125.7 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf paperPlot_All_SMSOB_cat.pdf r1 manage 22.4 K 2013-12-02 - 23:21 UnknownUser  
PNGpng paperPlot_All_SMSOB_cat.png r1 manage 186.5 K 2013-12-02 - 23:21 UnknownUser  
PDFpdf paperPlot_All_SMSOB_decay.pdf r1 manage 24.5 K 2013-12-02 - 23:21 UnknownUser  
PNGpng paperPlot_All_SMSOB_decay.png r1 manage 187.2 K 2013-12-02 - 23:21 UnknownUser  
PDFpdf pt_2_muTau_2012.pdf r2 r1 manage 21.8 K 2013-12-03 - 22:47 UnknownUser  
PNGpng pt_2_muTau_2012.png r2 r1 manage 152.1 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf pt_tt_muTau_2012_log.pdf r2 r1 manage 23.6 K 2013-12-03 - 22:47 UnknownUser  
PNGpng pt_tt_muTau_2012_log.png r2 r1 manage 154.6 K 2013-12-03 - 22:33 UnknownUser  
PNGpng run195552_black_3d.png r1 manage 1170.6 K 2013-12-04 - 10:51 UnknownUser  
PDFpdf svFitPerformance_forColin_svFitMass.pdf r1 manage 14.2 K 2013-11-29 - 16:55 UnknownUser  
PNGpng svFitPerformance_forColin_svFitMass.png r1 manage 86.7 K 2013-11-29 - 16:55 UnknownUser  
PDFpdf svFitPerformance_forColin_visMass.pdf r1 manage 14.2 K 2013-11-29 - 16:55 UnknownUser  
PNGpng svFitPerformance_forColin_visMass.png r1 manage 91.0 K 2013-11-29 - 16:55 UnknownUser  
PDFpdf tauTau_1jet_high_highhiggs_postfit_8TeV_LIN.pdf r2 r1 manage 17.1 K 2013-12-03 - 22:47 UnknownUser  
PNGpng tauTau_1jet_high_highhiggs_postfit_8TeV_LIN.png r2 r1 manage 125.0 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf tauTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.pdf r2 r1 manage 17.6 K 2013-12-03 - 22:47 UnknownUser  
PNGpng tauTau_1jet_high_mediumhiggs_postfit_8TeV_LIN.png r2 r1 manage 127.6 K 2013-12-03 - 22:33 UnknownUser  
PDFpdf tauTau_vbf_postfit_8TeV_LIN.pdf r2 r1 manage 15.9 K 2013-12-03 - 22:47 UnknownUser  
PNGpng tauTau_vbf_postfit_8TeV_LIN.png r2 r1 manage 132.4 K 2013-12-03 - 22:33 UnknownUser  
Edit | Attach | Watch | Print version | History: r16 < r15 < r14 < r13 < r12 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r16 - 2013-12-04 - unknown
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CMSPublic All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2018 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback