PLEASE WAIT A FEW SECONDS TO ALLOW THE PAGE TO LOAD PROPERLY BEFORE VIEWING THE MATERIAL BELOW

Search for direct top squark pair production in the single lepton final state at √s = 8 TeV (SUS-13-011)

Further information

This analysis is documented in arxiv:1308.1586, published in Eur. Phys. J. C 73 (2013) 2677
The Table and Figure numbers in this twiki correspond to the table and figure numbers in the paper.

Abstract

This paper presents a search for the pair production of top squarks in events with a single isolated electron or muon, jets, large missing transverse energy, and large transverse mass. The data sample corresponds to an integrated luminosity of 19.5fb-1 of pp collisions collected in 2012 by the CMS experiment at the LHC at a center-of-mass energy √s = 8 TeV. No significant excess in data is observed above the expectation from standard model processes. The results are interpreted in the context of supersymmetric models with pair production of top squarks that decay either to a top quark and a neutralino or to a bottom quark and a chargino. For small mass values of the lightest supersymmetric particle, top-squark mass values up to around 650 GeV are excluded.

Analysis summary

This search focuses on two decay modes of the top squark (t ̃): t ̃ → tχ ̃0 and t ̃ →bχ ̃ → bWχ ̃0, which are expected to have large branching fractions if kinematically accessible. The signature of the signal process includes high transverse momentum jets, including two b-jets, and missing ET. We require exactly one isolated, high pT electron or muon, at least 4 jets, at least one b-tagged jet, and large missing ET and transverse mass (MT). The requirement of large MT strongly suppresses backgrounds from semi-leptonic decays of top quark pairs, and from W+jets. The dominant background in this kinematic region is dilepton decays of top quark pairs, where one of the leptons is not identified. The primary results of the search use boosted decision tree (BDT) techniques, and a cut-based analysis is pursued as a cross-check. Several BDT and cut-based signal regions are defined, in order to be sensitive to a range of signal kinematics, which depend on the masses of the supersymmetric particles produced in the signal events. Backgrounds are estimated from Monte Carlo, with scale factors (where necessary) and uncertainties derived from data control regions. The data is consistent with the expected backgrounds in the signal regions. The results are interpreted in the context of models of top squark pair production where the top squark decays either to a top quark and a neutralino or to a bottom quark and a chargino. These results probe top squarks up to about 650 GeV, depending on the decay.

Approved tables and plots ( click on plot to get larger version )

(pseudo) Feynman diagrams

Figure Caption
fig1a.png Figure 1a : Diagram for top squark pair production for the t ̃ → tχ ̃0 decay mode.
fig1b.png Figure 1b : Diagram for top squark pair production for the t ̃ → bχ ̃ → bWχ ̃0 decay mode.


Results: yields vs. background prediction, kinematical distributions of (near-)final event sample

Tables 3,4,5,6 compare the event yields in the various Signal Regions with the event counts in the data. Figure 9 shows the BDT distributions after an MT cut and the MT distributions after a BDT cut for a loose and tight t ̃ → tχ ̃0 selection; Figure 10 is the same as Figure 9, but for t ̃ → bχ ̃ selections with x=0.5. Additional MT and BDT distributions can be found here

Table Caption
table3.png Table 3 : The result of the search for the t ̃ → tχ ̃0 BDT analysis. For each signal region the individual background contributions, total background, and observed yields are indicated. The uncertainty includes both the statistical and systematic components. The expected yields for two sample signal models are also indicated. The numbers in parentheses indicate the top squark and neutralino masses, respectively. The uncertainty is statistical.
table4.png Table 4 : The result of the search for the t ̃ → tχ ̃0 cut-based analysis. For each signal region the individual background contributions, total background, and observed yields are indicated. The uncertainty includes both the statistical and systematic components. The expected yields for two sample signal models are also indicated. The numbers in parentheses indicate the top squark and neutralino masses, respectively. The uncertainty is statistical.
table5.png Table 5 : The result of the search for the t ̃ → bχ ̃ BDT analysis. For each signal region the individual background contributions, total background, and observed yields are indicated. The uncertainty includes both the statistical and systematic components. The expected yields for two sample signal models are also indicated. The numbers in parentheses indicate the top squark mass, neutralino mass, and chargino mass parameter x, respectively. The uncertainty is statistical.
table6.png Table 6 : The result of the search for the t ̃ → bχ ̃ cut-based analysis. For each signal region the individual background contributions, total background, and observed yields are indicated. The uncertainty includes both the statistical and systematic components. The expected yields for six sample signal models are also indicated. The numbers in parentheses indicate the top squark mass, neutralino mass, and chargino mass parameter x, respectively. The uncertainty is statistical.
Figure Caption
fig8a.png Figure 8a : Comparison of the MT distributions in data vs. MC for events satisfying the loosest t ̃ → tχ ̃0 BDT signal region requirements (BDT1 loose). The distribution for the t ̃ → tχ ̃0 model with m(t ̃) = 250 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding signal region requirement.
fig8b.png Figure 8b : Comparison of the MT distributions in data vs. MC for events satisfying the tightest t ̃ → tχ ̃0 BDT signal region requirements (BDT4). The distribution for the t ̃ → tχ ̃0 model with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding signal region requirement. The bin to the right of the vertical line contains all events with MT > 120 GeV, and has been scaled by 1/3 to indicate the number of events per 60 GeV.
fig8c.png Figure 8c : Comparison of the BDT1 output distributions in data vs. MC for t ̃ → tχ ̃0 after the MT>120 GeV requirement. The distribution for the t ̃ → tχ ̃0 model with m(t ̃) = 250 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding BDT1 loose signal region requirement.
fig8d.png Figure 8d : Comparison of the BDT4 output distributions in data vs. MC for t ̃ → tχ ̃0 after the MT>120 GeV requirement is imposed. The distribution for the t ̃ → tχ ̃0 model with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding BDT4 signal region requirement.
fig9a.png Figure 9a : Comparison of the MT distributions in data vs. MC for events satisfying the loosest t ̃ → bχ ̃ with x=0.5 BDT signal region requirements (BDT1). The distribution for the t ̃ → bχ ̃ model with x=0.5 and m(t ̃) = 250 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding signal region requirement.
fig9b.png Figure 9b : Comparison of the MT distributions in data vs. MC for events satisfying the tightest t ̃ → bχ ̃ with x=0.5 BDT signal region requirements (BDT3). The distribution for the t ̃ → bχ ̃ model with x=0.5 and m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding signal region requirement.
fig9c.png Figure 9c : Comparison of the BDT1 output distributions in data vs. MC for t ̃ → bχ ̃ with x=0.5 BDT after the MT>120 GeV. The distribution for the t ̃ → bχ ̃ model with x=0.5 and m(t ̃) = 250 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding BDT1 signal region requirement.
fig9d.png Figure 9d : Comparison of the BDT3 output distributions in data vs. MC for t ̃ → bχ ̃ with x=0.5 BDT after the MT>120 GeV requirement. The distribution for the t ̃ → bχ ̃ model with x=0.5 and m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV is overlaid. The vertical dashed line indicates the corresponding BDT3 signal region requirement.


Interpretation: SUSY summary plots

makeSummaryPlot_BDT.png Interpretations using the primary results from the BDT method for the t ̃ → tχ ̃0 model, and the t ̃ → bχ ̃ model with chargino mass parameter x=0.25 models. The observed and median expected exclusion contours are indicated.
makeSummaryPlot_BDT_T2tt.png Interpretation using the primary results from the BDT method for the t ̃ → tχ ̃0 model. The observed and median expected exclusion contours are indicated.
makeSummaryPlot_BDT_T2bw.png Interpretation using the primary results from the BDT method for the t ̃ → bχ ̃ model with chargino mass parameter x=0.5. The observed and median expected exclusion contours are indicated.


Interpretation: limits on SUSY parameters

Figures 10 (a)-(d) show the limits in the m( t ̃) vs. m( χ ̃0) plane using the BDT method. These limits are obtained using models with unpolarized top quarks, charginos, and W-bosons in the final state. Figure 11 and Figure 23 show how the limits of Figure 10 would change under different polarization assumptions. Additional-Figure 11 gives the full BDT result for the stop --> top LSP decay mode in the case of decays into fully right handed top quarks (this more or less corresponds to the assumption in the Atlas analysis). Figure 20 (a)-(d) is the same as Figure 10 (a)-(d) but for the cut-based analysis. Figure 12 shows the limit as a function of the the t ̃ → tχ ̃0 mode.

Figure Caption
fig10a.png Figure 10a : Interpretations using the primary results from the BDT method for the t ̃ → tχ ̃0 model. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. . The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
figadd11.png Additional Figure 11 : Interpretations using the primary results from the BDT method for the t ̃ → tχ ̃0 model for the case of right-handed decay top quarks. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig10b.png Figure 10b : Interpretations using the primary results from the BDT method for the t ̃ → bχ ̃ model with chargino mass parameter x=0.25. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig10c.png Figure 10c : Interpretations using the primary results from the BDT method for the t ̃ → bχ ̃ model with chargino mass parameter x=0.5. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig10d.png Figure 10d : Interpretations using the primary results from the BDT method for the t ̃ → bχ ̃ model with chargino mass parameter x=0.75. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig11a.png Figure 11a : Comparison of the observed excluded regions for the t ̃ → tχ ̃0 model for the case of unpolarized top quarks, right-handed top quarks, and left-handed top quarks. This information is available in electronic format here: root file (draw the contours with 'histogram->Draw("CONT3")').
fig11b.png Figure 11b : Comparison of the observed excluded regions for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.5 for the nominal scenario, right-handed vs. left-handed charginos (χ ̃R and χ ̃L , respectively), and right-handed vs. left-handed Wχ ̃0χ ̃ couplings. This information is available in electronic format here: root file (draw the contours with 'histogram->Draw("CONT3")').
fig23a.png Figure 23a : Comparison of the observed excluded regions for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.25 for the nominal scenario, right-handed vs. left-handed charginos (χ ̃R and χ ̃L , respectively), and right-handed vs. left-handed Wχ ̃0χ ̃ couplings. This information is available in electronic format here: root file (draw the contours with 'histogram->Draw("CONT3")').
fig23b.png Figure 23b : Comparison of the observed excluded regions for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.75 for the nominal scenario, right-handed vs. left-handed charginos (χ ̃R and χ ̃L , respectively), and right-handed vs. left-handed Wχ ̃0χ ̃ couplings. This information is available in electronic format here: root file (draw the contours with 'histogram->Draw("CONT3")').
fig20a.png Figure 20a : Interpretations using the results for the cut-based analysis for the t ̃ → tχ ̃0 model. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig20b.png Figure 20b : Interpretations using the results for the cut-based analysis for the t ̃ → bχ ̃ model with chargino mass parameter x=0.25. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig20c.png Figure 20c : Interpretations using the results for the cut-based analysis for the t ̃ → bχ ̃ model with chargino mass parameter x=0.5. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig20d.png Figure 20d : Interpretations using the results for the cut-based analysis for the t ̃ → bχ ̃ model with chargino mass parameter x=0.75. The color scale indicates the observed cross section upper limit. The observed, median expected, and 1 standard deviation (σ) expected exclusion contours are indicated. The cross section limits are available in electronic format here: root file. The limits and exclusion contours can be drawn with this C file.
fig12.png Figure 12 : Observed excluded region as a function of the assumed branching fraction of the the t ̃ → tχ ̃0 mode assuming that the analysis has no acceptance to top squark pairs production when at least on of the stop quarks decay in a different mode.


Kinematical quantities used in the event selection

Figures 2(a-i) demonstrate that the kinematical quantities are well reproduced by the Monte Carlo at the preselection level. We also include a diagram to help explain the MT2W variable (but see the MT2W paper for more information).

Figure Caption
fig2a.png Figure 2a : Data vs. MC simulation comparison of the MT after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2b.png Figure 2b : Data vs. MC simulation comparison of the Etmiss after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2c.png Figure 2c : Data vs. MC simulation comparison of the MT2W after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2d.png Figure 2d : Data vs. MC simulation comparison of the hadronic top χ2 after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2e.png Figure 2e : Data vs. MC simulation comparison of the HTratio after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2f.png Figure 2f : Data vs. MC simulation comparison of the minimum difference in azimuthal angle between the ETmiss and the two leading jets after event pre-selection. The distribution for the t ̃ → tχ ̃0 decay mode with m(t ̃) = 650 GeV and m(χ ̃0) = 50 GeV, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2g.png Figure 2g : Data vs. MC simulation comparison of the leading b-jet pT after event pre-selection. The distributions for the t ̃ → bχ ̃ decay mode with m(t ̃) = 650 GeV, m(χ ̃0) = 50 GeV and intermediate chargino mass parameter x=0.5, scaled by a factor of 1000, and the t ̃ → tχ ̃0 decay mode with m(t ̃) = 250 GeV and m(χ ̃0) = 100 GeV, scaled by a factor of 10, are overlaid. The last bin contains the overflow.
fig2h.png Figure 2h : Data vs. MC simulation comparison of the separation in R between the lepton and the leading b-jet after event pre-selection. The distribution for the t ̃ → bχ ̃ decay mode with m(t ̃) = 650 GeV, m(χ ̃0) = 50 GeV and intermediate chargino mass parameter x=0.5, scaled by a factor of 1000, are overlaid. The last bin contains the overflow.
fig2i.png Figure 2i : Data vs. MC simulation comparison of the lepton transverse momentum after event pre-selection. The distribution for the t ̃ → bχ ̃ decay mode with m(t ̃) = 250 GeV, m(χ ̃0) = 150 GeV and intermediate chargino mass parameter x=0.5, scaled by a factor of 10, are overlaid. The last bin contains the overflow.
MT2W.png Additional figure : Schematic of MT2W for a dilepton tt event. Here p2 is the four-momentum of the entire missing on-shell W and p1 is the four-momentum of the neutrino that gets paired with the visible lepton to form the other on-shell W. The dashed lines represent unseen particles, the solid lines indicate reconstructed particles, and the dotted line surround the lepton-neutrino pairs that are constrained to have a mass equal to that of the W boson.


Signal Region definitions

Table 1 summarizes the requirements that define the cut-and-count signal regions. A number of BDTs were optimized to target different scenarios of SUSY particle masses and top squark decay modes. Figure 3(a)-(d) show the regions in the plane of top squark mass vs. LSP mass (for different decay modes) corresponding to each BDT.

Table Caption
table1.png Table 1 : Summary of the variables used as inputs for the BDTs and of the kinematic requirements in the cut-based analysis. All signal regions are defined with MT > 120 GeV. For the t ̃ → tχ ̃0 BDT trained in region 5 where the top quark is off-shell, the hadronic top χ2 is not included and the leading b-jet pT is included.
Figure Caption
fig3a.png Figure 3a : The regions used to train the BDTs, in the m(χ ̃0) vs. m(t ̃) parameter space for the t ̃ → tχ ̃0 decay mode.
fig3b.png Figure 3b : The regions used to train the BDTs, in the m(χ ̃0) vs. m(t ̃) parameter space for the t ̃ → bχ ̃ decay mode with x=0.25.
fig3c.png Figure 3c : The regions used to train the BDTs, in the m(χ ̃0) vs. m(t ̃) parameter space for the t ̃ → bχ ̃ decay mode with x=0.5.
fig3d.png Figure 3d : The regions used to train the BDTs, in the m(χ ̃0) vs. m(t ̃) parameter space for the t ̃ → bχ ̃ decay mode with x=0.75.


Sample BDT outputs at the preselection stage

fig4a.png Figure 4a : Data vs. MC simulation comparisons of the BDT output for the t ̃ → tχ ̃0 scenario in training region 1. The event pre-selection is applied. The vertical dashed line indicates the corresponding signal region requirement. The last bin contains the overflow.
fig4b.png Figure 4b : Data vs. MC simulation comparisons of the BDT output for the t ̃ → bχ ̃ scenario with x=0.5 in training region 1. The event pre-selection is applied. The vertical dashed line indicates the corresponding signal region requirement. The last bin contains the overflow.
fig4c.png Figure 4c : Data vs. MC simulation comparisons of the BDT output for the t ̃ → tχ ̃0 scenario in training region 4. The event pre-selection is applied. The vertical dashed line indicates the corresponding signal region requirement. The last bin contains the overflow.
fig4d.png Figure 4d : Data vs. MC simulation comparisons of the BDT output for the t ̃ → bχ ̃ scenario with x=0.5 in training region 3. The event pre-selection is applied. The vertical dashed line indicates the corresponding signal region requirement. The last bin contains the overflow.


Control region studies

Figure 5 demonstrates that the jet multiplicity in ttbar dilepton events is well understood. Figure 6(a)-(f) shows sample MT and BDT distributions for the dilepton control sample (CR-2l), the lepton+track control sample (CR-lt), and the Wjets control sample (CR-0b). The MT distributions are shown after the after applying the signal-like requirement on the BDT (indicated by the dashed line in the BDT distribution for the corresponding control sample). Figure 7 shows the transverse mass distribution for a sample enriched in Wjets events.

Figure Caption
fig5.png Figure 5 : Comparison of the jet multiplicity distributions in data and MC simulation for the sample dominated by dilepton tt events.
fig6a.png Figure 6a : Data vs. MC simulation comparison in the control region CR-2l of the BDT output distribution for the t ̃ → tχ ̃0 model in training region 1. The last bin contains the overflow.
fig6b.png Figure 6b : Data vs. MC simulation comparison in the control region CR-2l of the MT distribution after the signal-like requirement on the BDT output (indicated by the dashed line in Fig. 6a) for the t ̃ → tχ ̃0 model in training region 1. The last bin contains the overflow.
fig6c.png Figure 6c : Data vs. MC simulation comparison in the control region CR-lt of the BDT output distribution for the t ̃ → tχ ̃0 model in training region 1. The last bin contains the overflow.
fig6d.png Figure 6d : Data vs. MC simulation comparison in the control region CR-lt of the MT distribution after the signal-like requirement on the BDT output (indicated by the dashed line in Fig. 6c) for the t ̃ → tχ ̃0 model in training region 1. The last bin contains the overflow.
fig6e.png Figure 6e : Data vs. MC simulation comparison in the control region CR-0b of the BDT output distribution for the t ̃ → tχ ̃0 model in training region 1. The last bin contains the overflow.
fig6f.png Figure 6f : Data vs. MC simulation comparison in the control region CR-0b of the MT distribution after the signal-like requirement on the BDT output (indicated by the dashed line in Fig. 6e) for the t ̃ → tχ ̃0 model in training region 1. The scale factor on the W+jets component is applied to the MC in the MT tail. The last bin contains the overflow.
fig7.png Figure 7 : MT distributions for CR-0b events after the pre-selection requirements only. The MT tail in the MC needs to be rescaled by a factor of ~ 1.2 to agree with the data.


Systematic uncertainties on the background prediction

Table 2,7,8, and 9 show the breakdown of the systematic uncertainties for the BDT (Tables 2 and 8) and cut-and-count (Tables 7 and 9) background predictions.

Table Caption
table2.png Table 2 : Breakdown of the sources of uncertainty as well as the total relative uncertainty (in percent), shown on the bottom row, on the total background predictions for the t ̃ → tχ ̃0 BDT signal regions.
table7.png Table 7 : Breakdown of the sources of uncertainty as well as the total relative uncertainty (in percent), shown on the bottom row, on the total background predictions for the t ̃ → tχ ̃0 cut-based signal regions.
table8.png Table 8 : Breakdown of the sources of uncertainty as well as the total relative uncertainty (in percent), shown on the bottom row, on the total background predictions for the t ̃ → bχ ̃ BDT signal regions.
table9.png Table 9 : Breakdown of the sources of uncertainty as well as the total relative uncertainty (in percent), shown on the bottom row, on the total background predictions for the t ̃ → bχ ̃ cut-based signal regions.


Additional MT and BDT output distributions

Here we show the full set of MT and BDT distributions to complete those that were shown in the "Results" section above.

Figure Caption
fig13a.png Figure 13a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT1 tight t ̃ → tχ ̃0 signal region requirements. The vertical dashed line indicates the MT corresponding signal region requirement.
fig13b.png Figure 13b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT2 t ̃ → tχ ̃0 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig13c.png Figure 13c : Comparison of the BDT1 output distributions in data vs. MC simulation for t ̃ → tχ ̃0 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT1 tight signal region requirement.
fig13d.png Figure 13d : Comparison of the BDT2 output distributions in data vs. MC simulation for t ̃ → tχ ̃0 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT2 signal region requirement.
fig14a.png Figure 14a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT3 t ̃ → tχ ̃0 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig14b.png Figure 14b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT5 t ̃ → tχ ̃0 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig14c.png Figure 14c : Comparison of the BDT3 output distributions in data vs. MC simulation for t ̃ → tχ ̃0 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT3 signal region requirement.
fig14d.png Figure 14d : Comparison of the BDT5 output distributions in data vs. MC simulation for t ̃ → tχ ̃0 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT5 signal region requirement.
fig15a.png Figure 15a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT1 t ̃ → bχ ̃ x=0.25 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig15b.png Figure 15b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT2 t ̃ → bχ ̃ x=0.25 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig15c.png Figure 15c : Comparison of the BDT1 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.25 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT1 signal region requirement.
fig15d.png Figure 15d : Comparison of the BDT2 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.25 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT2 signal region requirement.
fig16a.png Figure 16a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT3 loose t ̃ → bχ ̃ x=0.25 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig16b.png Figure 16b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT2 loose t ̃ → bχ ̃ x=0.5 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig16c.png Figure 16c : Comparison of the BDT3 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.25 after the MT > 120 GeV requirement is imposed. The vertical dashed line indicates the corresponding BDT3 signal region requirement.
fig16d.png Figure 16d : Comparison of the BDT2 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.5 after the MT > 120 GeV requirement is imposed. The vertical dashed line indicates the corresponding BDT2 loose signal region requirement.
fig17a.png Figure 17a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT2 tight t ̃ → bχ ̃ x=0.5 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig17b.png Figure 17b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT4 t ̃ → bχ ̃ x=0.5 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig17c.png Figure 17c : Comparison of the BDT2 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.5 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT2 tight signal region requirement.
fig17d.png Figure 17d : Comparison of the BDT4 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.5 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT4 signal region requirement.
fig18a.png Figure 18a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT1 t ̃ → bχ ̃ x=0.75 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig18b.png Figure 18b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT2 t ̃ → bχ ̃ x=0.75 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig18c.png Figure 18c : Comparison of the BDT1 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.75 BDT after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT1 signal region requirement.
fig18d.png Figure 18d : Comparison of the BDT2 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.75 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT2 signal region requirement.
fig19a.png Figure 19a : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT3 t ̃ → bχ ̃ x=0.75 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig19b.png Figure 19b : Comparison of the MT distributions in data vs. MC simulation for events satisfying the BDT4 t ̃ → bχ ̃ x=0.75 signal region requirements. The vertical dashed line indicates the corresponding MT signal region requirement.
fig19c.png Figure 19c : Comparison of the BDT3 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.75 after the MT > 120 GeV requirement. The vertical dashed line indicates the corresponding BDT3 signal region requirement.
fig19d.png Figure 19d : Comparison of the BDT4 output distributions in data vs. MC simulation for t ̃ → bχ ̃ x=0.75 after the MT > 120 GeV requirement is imposed. The vertical dashed line indicates the corresponding BDT4 signal region requirement.


Monte Carlo modeling of initial state radiation

The modeling of initial state radiation is important for the understanding of the signal acceptance when the LSP is produced in a SUSY decay with small Q-value. Figure 24 and 25 show how well initial state radiation is modeled in the CMS Monte Carlo.

Figure Caption
fig24a.png Figure 24a : Comparison of data to MC predictions for the dilepton pT in dilepton Z+jets events. The MC prediction is normalized to the total data yield to compare the shapes of the distributions. The ratio of data/MC is shown at the top of the figure, and the light blue band shows the weights derived for simulation and the variation to assess systematic uncertainties.
fig24b.png Figure 24b : Comparison of data to MC predictions for the jet recoil system pT in dilepton Z+jets events, where the "jet recoil system" is taken as the vector sum of all jets in the event. The MC prediction is normalized to the total data yield to compare the shapes of the distributions. The ratio of data/MC is shown at the top of the figure, and the light blue band shows the weights derived for simulation and the variation to assess systematic uncertainties.
fig25.png Figure 25 : Comparison of data to MC prediction for the jet recoil system pT in dilepton ttbar events, where the "jet recoil system" is taken as the vector sum of all jets in the event which are not b-tagged. The MC prediction is normalized to the total data yield to compare the shapes of the distributions. The ratio of data/MC is shown at the top of the figure, and the light blue band shows the weights derived for MC and the variation to assess systematic uncertainties.


Signal Regions used for limit extraction

Here we show maps of "best a-priori signal region" as a function of decay model and SUSY parameters for both the BDT and cut-and-count searches. At any point in SUSY parameter space the cross-section limits are extracted using the results from the "best a-priori signal region", ie, the signal region with the most stringent expected cross-section limit.

Figure Caption

fig21a.png Figure 21a : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the BDT t ̃ → tχ ̃0 analysis. The number indicates the BDT training region.
fig21b.png Figure 21b : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the BDT t ̃ → bχ ̃ analysis with chargino mass parameter x=0.25. The number indicates the BDT training region.
fig21c.png Figure 21c : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the BDT t ̃ → bχ ̃ analysis with chargino mass parameter x=0.5. The number indicates the BDT training region.
fig21d.png Figure 21d : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the BDT t ̃ → bχ ̃ analysis with chargino mass parameter x=0.75. The number indicates the BDT training region.
fig22a.png Figure 22a : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the cut-based t ̃ → tχ ̃0 analysis. LM and HM refer to low ∆M and high ∆M, respectively, and the number indicates the ETmiss requirement.
fig22b.png Figure 22b : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the cut-based t ̃ → bχ ̃ analysis with chargino mass parameter x=0.25. LM and HM refer to low ∆M and high ∆M, respectively, and the number indicates the ETmiss requirement.
fig22c.png Figure 22c : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the cut-based t ̃ → bχ ̃ analysis with chargino mass parameter x=0.5. LM and HM refer to low ∆M and high ∆M, respectively, and the number indicates the ETmiss requirement.
fig22d.png Figure 22d : The most sensitive signal region in the m(χ ̃0) vs. m(t ̃) parameter space in the cut-based t ̃ → bχ ̃ analysis with chargino mass parameter x=0.75. LM and HM refer to low ∆M and high ∆M, respectively, and the number indicates the ETmiss requirement.


Acceptance maps, not in paper

topneutralino_cutbased_efficiencies.png Additional Figure : Signal acceptance maps for the t ̃ → tχ ̃0 signal model, for the low deltaM (LM) and high deltaM (HM) signal regions of the cut-based analysis (see Table 4 in the PAS). The number after LM or HM indicates the ETmiss requirement. This material, together with the map of the most sensitive signal region, is available in electronic form here: root file.
topneutralino_cutbased_efficiencies.png Additional Figure : Signal acceptance maps for the t ̃ → bχ ̃ signal model with x=0.5, for the low deltaM (LM) and high deltaM (HM) signal regions of the cut-based analysis (see Table 6 in the PAS). The number after LM or HM indicates the ETmiss requirement. This material, together with the map of the most sensitive signal region, is available in electronic form here: root file.


Additional plots, not in paper

Additional Figures 1->4 further demonstrate the level of understanding of initial state radiation. Additional Figure 5 show how the acceptance to the MT cut evolves in the compressed region of the SUSY spectrum. Additional Figure 6 can be used to help understand what is going on in Additional Figure 5. The improvement in sensitivity in the BDT analysis with respect to the cut-and-count analysis can be seen in Additional Figures 7->10. The remaining Additional Figures (12 -> 17) illustrate the signal vs. background separation of the kinematical variables used in the BDT.

Figure Caption
figadd1.png Additional Figure 1 : Comparison of data to MC predictions for the number of jets in dilepton Z+jets events. The MC prediction is normalized to the total data yield to compare the shapes of the distributions.
figadd2.png Additional Figure 2 : Comparison of data to MC predictions for the number of jets in addition to the two b-tagged jets from the top quark decay in dilepton ttbar events. The MC prediction is normalized to the total data yield to compare the shapes of the distributions.
figadd3.png Additional Figure 3 : Comparison of data to MC predictions for the jet recoil system pT in trilepton WZ+jets events, where the "jet recoil system" is taken as the vector sum of all jets in the event. The MC prediction is normalized to the total data yield to compare the shapes of the distributions. The ratio of data/MC is shown at the top of the figure, and the light blue band shows the weights derived for simulation and the variation to assess systematic uncertainties.
figadd4.png Additional Figure 4 : Comparison of data to MC predictions for the number of jets in trilepton WZ+jets events. The MC prediction is normalized to the total data yield to compare the shapes of the distributions.
figadd5.png Additional Figure 5 : Comparison of the MT distributions for the SM background and the 3 signal points with the same top squark mass 250 GeV and different neutralino mass, 50, 75 and 100 GeV.
figadd6.png Additional Figure 6 : Comparison of the generator-level momentum of the χ ̃0 in the decay t ̃ → tχ ̃0, in the top squark rest frame, for 3 signal points with the same top squark mass 250 GeV and different neutralino mass, 50, 75 and 100 GeV.
figadd7.png Additional Figure 7 : Comparison of the expected limits from the BDT and cut-based analyses for the t ̃ → tχ ̃0 model. The colors and numbers represent the ratio of the expected cross section limits, BDT divided by cut-based. The expected exclusion contours from the two approaches are also indicated.
figadd8.png Additional Figure 8 : Comparison of the expected limits from the BDT and cut-based analyses for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.75. The colors and numbers represent the ratio of the expected cross section limits, BDT divided by cut-based. The expected exclusion contours from the two approaches are also indicated.
figadd9.png Additional Figure 9 : Comparison of the expected limits from the BDT and cut-based analyses for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.5. The colors and numbers represent the ratio of the expected cross section limits, BDT divided by cut-based. The expected exclusion contours from the two approaches are also indicated.
figadd10.png Additional Figure 10 : Comparison of the expected limits from the BDT and cut-based analyses for the t ̃ → bχ ̃ model with chargino mass parameter x = 0.25. The colors and numbers represent the ratio of the expected cross section limits, BDT divided by cut-based. The expected exclusion contours from the two approaches are also indicated.
mt2w_preselection_mt120.png Additional Figure 12 : Comparison of the signal vs. background distributions of the MT2W quantity. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
bpt_preselection_mt120.png Additional Figure 13 : Comparison of the signal vs. background distributions of the leading b-tagged jet pT. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
chi2_preselection_mt120.png Additional Figure 14 : Comparison of the signal vs. background distributions of the hadronic top chi^2. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
drlb_preselection_mt120.png Additional Figure 15 : Comparison of the signal vs. background distributions of the opening angle between the lepton and leading b-tagged jet. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
htratio_preselection_mt120.png Additional Figure 16 : Comparison of the signal vs. background distributions of the HTratio, the fraction of the event HT in the same hemisphere as the ETmiss. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
mindphi_preselection_mt120.png Additional Figure 17 : Comparison of the signal vs. background distributions of the minimum delta(phi) between either of the 2 leading jets and ETmiss. The event pre-selection requirements and the MT > 120 GeV requirement are applied.
T2tt_450_25_leptonpt.png Additional Figure 18a : Comparison of the lepton transverse momentum for unpolarized top quarks (black), left-handed top quarks (red), and right-handed top quarks (blue), for the t ̃(450) → tχ ̃0(25) signal model.
T2tt_450_25_mt.png Additional Figure 18b : Comparison of the transverse mass for unpolarized top quarks (black), left-handed top quarks (red), and right-handed top quarks (blue), for the t ̃(450) → tχ ̃0(25) signal model.
stop1.png Additional Figure : Event display for a signal candidate event in data.
stop2.png Additional Figure : Event display for a signal candidate event in data.


Code

Here is code to calculate the hadronic top chisquared and the MT2W variable used in the analysis. This code is also included in a bigger tarfile described below under "Electronic Material".


Electronic material

The attached tgz file contain the observed cross section limits and the observed and expected exclusion contours as root histograms. For each root file there is a corresponding C file which can be used to draw the limits and contours. It also contains the code for calculating the hadronic top chisquared and MT2W variables, as well as rrot files with the acceptance maps for the cut-based analysis.

Additional Material to aid the Phenomenology Community with Reinterpretations of these Results

T2tt_650_50.png Additional Table 1: Cut flow table for the t ̃ → tχ ̃0 decay mode, mstop=650 GeV, mLSP=50 GeV. Details are available in the caption.
T2tt_250_50.png Additional Table 2: Cut flow table for the t ̃ → tχ ̃0 decay mode, mstop=250 GeV, mLSP=50 GeV. Details are the same as in the caption of the previous figure.
electron_trigger_efficiency.png Additional Table 3: The efficiency of the single electron trigger, in bins of pt and eta.
muon_trigger_efficiency.png Additional Table 4: The efficiency of the single muon trigger, in bins of pt and eta.
electron_ID.png Additional Figure 19: The identification-only (no isolation) efficiency of the electron selection, parameterized vs. lepton pt.
muon_ID.png Additional Figure 20: The identification-only (no isolation) efficiency of the muon selection, parameterized vs. lepton pt.

Topic attachments
I Attachment History Action Size Date Who Comment
PDFpdf MT2W.pdf r1 manage 15.8 K 2013-07-11 - 15:48 ClaudioCampagnari  
PNGpng MT2W.png r1 manage 50.0 K 2013-07-11 - 15:48 ClaudioCampagnari  
PDFpdf T2tt_250_50.pdf r1 manage 60.0 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng T2tt_250_50.png r1 manage 207.4 K 2014-05-08 - 20:00 FrankWuerthwein  
PDFpdf T2tt_450_25_leptonpt.pdf r1 manage 22.9 K 2013-07-12 - 06:47 ClaudioCampagnari  
PNGpng T2tt_450_25_leptonpt.png r1 manage 16.4 K 2013-07-12 - 06:47 ClaudioCampagnari  
PDFpdf T2tt_450_25_mt.pdf r1 manage 23.0 K 2013-07-12 - 06:46 ClaudioCampagnari  
PNGpng T2tt_450_25_mt.png r1 manage 14.4 K 2013-07-12 - 06:46 ClaudioCampagnari  
PDFpdf T2tt_650_50.pdf r1 manage 59.7 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng T2tt_650_50.png r1 manage 174.2 K 2014-05-08 - 20:00 FrankWuerthwein  
C source code filec bottomchargino_x25_BDT.C r1 manage 0.3 K 2013-08-09 - 00:13 VerenaMartinez  
Unknown file formatroot bottomchargino_x25_BDT.root r1 manage 11.1 K 2013-08-09 - 00:13 VerenaMartinez  
C source code filec bottomchargino_x25_cutbased.C r1 manage 0.3 K 2013-08-09 - 00:13 VerenaMartinez  
Unknown file formatroot bottomchargino_x25_cutbased.root r1 manage 11.1 K 2013-08-09 - 00:13 VerenaMartinez  
Unknown file formatroot bottomchargino_x25_polarization.root r1 manage 13.0 K 2013-08-09 - 00:13 VerenaMartinez  
C source code filec bottomchargino_x50_BDT.C r1 manage 0.3 K 2013-08-09 - 00:13 VerenaMartinez  
Unknown file formatroot bottomchargino_x50_BDT.root r1 manage 11.8 K 2013-08-09 - 00:13 VerenaMartinez  
C source code filec bottomchargino_x50_cutbased.C r1 manage 0.3 K 2013-08-09 - 00:13 VerenaMartinez  
Unknown file formatroot bottomchargino_x50_cutbased.root r1 manage 11.9 K 2013-08-09 - 00:13 VerenaMartinez  
PDFpdf bottomchargino_x50_cutbased_efficiencies.pdf r2 r1 manage 83.5 K 2013-08-01 - 19:42 ClaudioCampagnari  
PNGpng bottomchargino_x50_cutbased_efficiencies.png r2 r1 manage 78.4 K 2013-08-01 - 19:42 ClaudioCampagnari  
Unknown file formatroot bottomchargino_x50_cutbased_efficiencies.root r1 manage 58.2 K 2013-07-30 - 05:30 ClaudioCampagnari  
Unknown file formatroot bottomchargino_x50_polarization.root r1 manage 14.5 K 2013-08-09 - 00:13 VerenaMartinez  
C source code filec bottomchargino_x75_BDT.C r1 manage 0.3 K 2013-08-09 - 00:14 VerenaMartinez  
Unknown file formatroot bottomchargino_x75_BDT.root r1 manage 12.1 K 2013-08-09 - 00:14 VerenaMartinez  
C source code filec bottomchargino_x75_cutbased.C r1 manage 0.3 K 2013-08-09 - 00:14 VerenaMartinez  
Unknown file formatroot bottomchargino_x75_cutbased.root r1 manage 12.2 K 2013-08-09 - 00:14 VerenaMartinez  
Unknown file formatroot bottomchargino_x75_polarization.root r1 manage 15.2 K 2013-08-09 - 00:14 VerenaMartinez  
PDFpdf bpt_preselection_mt120.pdf r1 manage 37.4 K 2013-07-12 - 06:44 ClaudioCampagnari  
PNGpng bpt_preselection_mt120.png r1 manage 19.2 K 2013-07-12 - 06:44 ClaudioCampagnari  
PDFpdf chi2_preselection_mt120.pdf r1 manage 36.3 K 2013-07-12 - 06:44 ClaudioCampagnari  
PNGpng chi2_preselection_mt120.png r1 manage 20.1 K 2013-07-12 - 06:44 ClaudioCampagnari  
PDFpdf drlb_preselection_mt120.pdf r1 manage 35.8 K 2013-07-12 - 06:44 ClaudioCampagnari  
PNGpng drlb_preselection_mt120.png r1 manage 18.6 K 2013-07-12 - 06:44 ClaudioCampagnari  
PDFpdf electron_ID.pdf r1 manage 313.4 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng electron_ID.png r1 manage 94.9 K 2014-05-08 - 20:00 FrankWuerthwein  
PDFpdf electron_trigger_efficiency.pdf r1 manage 50.4 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng electron_trigger_efficiency.png r1 manage 77.5 K 2014-05-08 - 20:00 FrankWuerthwein  
Compressed Zip archivetgz electronicMaterial.tgz r4 r3 r2 r1 manage 369.7 K 2013-12-13 - 06:03 ClaudioCampagnari  
PDFpdf fig10a.pdf r1 manage 27.5 K 2013-07-11 - 14:50 ClaudioCampagnari  
PNGpng fig10a.png r1 manage 75.0 K 2013-07-11 - 14:50 ClaudioCampagnari  
PDFpdf fig10b.pdf r2 r1 manage 25.5 K 2013-07-28 - 18:49 ClaudioCampagnari  
PNGpng fig10b.png r2 r1 manage 52.9 K 2013-07-28 - 18:49 ClaudioCampagnari  
PDFpdf fig10c.pdf r2 r1 manage 25.5 K 2013-07-28 - 18:49 ClaudioCampagnari  
PNGpng fig10c.png r2 r1 manage 52.4 K 2013-07-28 - 18:49 ClaudioCampagnari  
PDFpdf fig10d.pdf r2 r1 manage 26.2 K 2013-07-28 - 18:49 ClaudioCampagnari  
PNGpng fig10d.png r2 r1 manage 51.2 K 2013-07-28 - 18:49 ClaudioCampagnari  
PDFpdf fig11a.pdf r1 manage 16.4 K 2013-07-11 - 14:55 ClaudioCampagnari  
PNGpng fig11a.png r1 manage 32.5 K 2013-07-11 - 14:55 ClaudioCampagnari  
PDFpdf fig11b.pdf r3 r2 r1 manage 17.1 K 2013-08-01 - 19:40 ClaudioCampagnari  
PNGpng fig11b.png r3 r2 r1 manage 39.4 K 2013-08-01 - 19:40 ClaudioCampagnari  
PDFpdf fig12.pdf r1 manage 17.9 K 2013-07-11 - 15:21 ClaudioCampagnari  
PNGpng fig12.png r1 manage 50.1 K 2013-07-11 - 15:22 ClaudioCampagnari  
PDFpdf fig13a.pdf r1 manage 16.4 K 2013-07-11 - 23:42 ClaudioCampagnari  
PNGpng fig13a.png r1 manage 30.3 K 2013-07-11 - 23:42 ClaudioCampagnari  
PDFpdf fig13b.pdf r1 manage 16.4 K 2013-07-11 - 23:42 ClaudioCampagnari  
PNGpng fig13b.png r1 manage 29.4 K 2013-07-11 - 23:42 ClaudioCampagnari  
PDFpdf fig13c.pdf r1 manage 18.0 K 2013-07-11 - 23:42 ClaudioCampagnari  
PNGpng fig13c.png r1 manage 35.5 K 2013-07-11 - 23:43 ClaudioCampagnari  
PDFpdf fig13d.pdf r1 manage 18.0 K 2013-07-11 - 23:42 ClaudioCampagnari  
PNGpng fig13d.png r1 manage 35.8 K 2013-07-11 - 23:42 ClaudioCampagnari  
PDFpdf fig14a.pdf r1 manage 16.2 K 2013-07-11 - 23:40 ClaudioCampagnari  
PNGpng fig14a.png r1 manage 29.0 K 2013-07-11 - 23:40 ClaudioCampagnari  
PDFpdf fig14b.pdf r1 manage 16.4 K 2013-07-11 - 23:40 ClaudioCampagnari  
PNGpng fig14b.png r1 manage 29.5 K 2013-07-11 - 23:40 ClaudioCampagnari  
PDFpdf fig14c.pdf r1 manage 18.2 K 2013-07-11 - 23:40 ClaudioCampagnari  
PNGpng fig14c.png r1 manage 36.7 K 2013-07-11 - 23:40 ClaudioCampagnari  
PDFpdf fig14d.pdf r1 manage 17.4 K 2013-07-11 - 23:40 ClaudioCampagnari  
PNGpng fig14d.png r1 manage 33.6 K 2013-07-11 - 23:40 ClaudioCampagnari  
PDFpdf fig15a.pdf r1 manage 15.9 K 2013-07-11 - 23:38 ClaudioCampagnari  
PNGpng fig15a.png r1 manage 30.2 K 2013-07-11 - 23:38 ClaudioCampagnari  
PDFpdf fig15b.pdf r1 manage 16.4 K 2013-07-11 - 23:38 ClaudioCampagnari  
PNGpng fig15b.png r1 manage 30.2 K 2013-07-11 - 23:38 ClaudioCampagnari  
PDFpdf fig15c.pdf r1 manage 18.1 K 2013-07-11 - 23:38 ClaudioCampagnari  
PNGpng fig15c.png r1 manage 37.7 K 2013-07-11 - 23:38 ClaudioCampagnari  
PDFpdf fig15d.pdf r1 manage 17.5 K 2013-07-11 - 23:38 ClaudioCampagnari  
PNGpng fig15d.png r1 manage 35.3 K 2013-07-11 - 23:38 ClaudioCampagnari  
PDFpdf fig16a.pdf r1 manage 16.2 K 2013-07-11 - 23:30 ClaudioCampagnari  
PNGpng fig16a.png r1 manage 29.4 K 2013-07-11 - 23:30 ClaudioCampagnari  
PDFpdf fig16b.pdf r1 manage 16.3 K 2013-07-11 - 23:30 ClaudioCampagnari  
PNGpng fig16b.png r1 manage 30.6 K 2013-07-11 - 23:30 ClaudioCampagnari  
PDFpdf fig16c.pdf r1 manage 17.7 K 2013-07-11 - 23:30 ClaudioCampagnari  
PNGpng fig16c.png r1 manage 35.4 K 2013-07-11 - 23:30 ClaudioCampagnari  
PDFpdf fig16d.pdf r1 manage 17.7 K 2013-07-11 - 23:30 ClaudioCampagnari  
PNGpng fig16d.png r1 manage 35.6 K 2013-07-11 - 23:30 ClaudioCampagnari  
PDFpdf fig17a.pdf r1 manage 16.5 K 2013-07-11 - 23:29 ClaudioCampagnari  
PNGpng fig17a.png r1 manage 30.6 K 2013-07-11 - 23:29 ClaudioCampagnari  
PDFpdf fig17b.pdf r1 manage 17.2 K 2013-07-11 - 23:29 ClaudioCampagnari  
PNGpng fig17b.png r1 manage 34.0 K 2013-07-11 - 23:29 ClaudioCampagnari  
PDFpdf fig17c.pdf r1 manage 17.8 K 2013-07-11 - 23:29 ClaudioCampagnari  
PNGpng fig17c.png r1 manage 35.3 K 2013-07-11 - 23:29 ClaudioCampagnari  
PDFpdf fig17d.pdf r1 manage 17.9 K 2013-07-11 - 23:29 ClaudioCampagnari  
PNGpng fig17d.png r1 manage 35.2 K 2013-07-11 - 23:29 ClaudioCampagnari  
PDFpdf fig18a.pdf r1 manage 16.3 K 2013-07-11 - 23:28 ClaudioCampagnari  
PNGpng fig18a.png r1 manage 29.9 K 2013-07-11 - 23:28 ClaudioCampagnari  
PDFpdf fig18b.pdf r1 manage 16.4 K 2013-07-11 - 23:28 ClaudioCampagnari  
PNGpng fig18b.png r1 manage 29.9 K 2013-07-11 - 23:28 ClaudioCampagnari  
PDFpdf fig18c.pdf r1 manage 17.4 K 2013-07-11 - 23:28 ClaudioCampagnari  
PNGpng fig18c.png r1 manage 34.6 K 2013-07-11 - 23:28 ClaudioCampagnari  
PDFpdf fig18d.pdf r1 manage 17.7 K 2013-07-11 - 23:28 ClaudioCampagnari  
PNGpng fig18d.png r1 manage 34.8 K 2013-07-11 - 23:28 ClaudioCampagnari  
PDFpdf fig19a.pdf r1 manage 16.5 K 2013-07-11 - 23:48 ClaudioCampagnari  
PNGpng fig19a.png r1 manage 30.7 K 2013-07-11 - 23:48 ClaudioCampagnari  
PDFpdf fig19b.pdf r1 manage 17.4 K 2013-07-11 - 23:48 ClaudioCampagnari  
PNGpng fig19b.png r1 manage 33.6 K 2013-07-11 - 23:48 ClaudioCampagnari  
PDFpdf fig19c.pdf r1 manage 17.9 K 2013-07-11 - 23:48 ClaudioCampagnari  
PNGpng fig19c.png r1 manage 36.4 K 2013-07-11 - 23:48 ClaudioCampagnari  
PDFpdf fig19d.pdf r1 manage 17.2 K 2013-07-11 - 23:48 ClaudioCampagnari  
PNGpng fig19d.png r1 manage 33.7 K 2013-07-11 - 23:48 ClaudioCampagnari  
PDFpdf fig1a.pdf r1 manage 57.4 K 2013-07-11 - 11:36 ClaudioCampagnari  
PNGpng fig1a.png r1 manage 47.1 K 2013-07-11 - 11:36 ClaudioCampagnari  
PDFpdf fig1b.pdf r1 manage 16.9 K 2013-07-11 - 11:36 ClaudioCampagnari  
PNGpng fig1b.png r1 manage 40.7 K 2013-07-11 - 11:36 ClaudioCampagnari  
PDFpdf fig20a.pdf r1 manage 26.6 K 2013-07-11 - 15:11 ClaudioCampagnari  
PNGpng fig20a.png r1 manage 73.7 K 2013-07-11 - 15:11 ClaudioCampagnari  
PDFpdf fig20b.pdf r2 r1 manage 24.8 K 2013-07-28 - 18:49 ClaudioCampagnari  
PNGpng fig20b.png r1 manage 59.5 K 2013-07-11 - 15:11 ClaudioCampagnari  
PDFpdf fig20c.pdf r2 r1 manage 25.5 K 2013-07-28 - 18:50 ClaudioCampagnari  
PNGpng fig20c.png r2 r1 manage 54.5 K 2013-07-28 - 18:50 ClaudioCampagnari  
PDFpdf fig20d.pdf r2 r1 manage 26.2 K 2013-07-28 - 18:50 ClaudioCampagnari  
PNGpng fig20d.png r2 r1 manage 52.1 K 2013-07-28 - 18:50 ClaudioCampagnari  
PDFpdf fig21a.pdf r1 manage 23.5 K 2013-07-12 - 00:12 ClaudioCampagnari  
PNGpng fig21a.png r1 manage 86.2 K 2013-07-12 - 00:12 ClaudioCampagnari  
PDFpdf fig21b.pdf r2 r1 manage 22.3 K 2013-07-28 - 18:50 ClaudioCampagnari  
PNGpng fig21b.png r2 r1 manage 38.0 K 2013-07-28 - 18:50 ClaudioCampagnari  
PDFpdf fig21c.pdf r2 r1 manage 23.4 K 2013-07-28 - 18:50 ClaudioCampagnari  
PNGpng fig21c.png r2 r1 manage 47.2 K 2013-07-28 - 18:50 ClaudioCampagnari  
PDFpdf fig21d.pdf r2 r1 manage 23.3 K 2013-07-28 - 18:50 ClaudioCampagnari  
PNGpng fig21d.png r2 r1 manage 42.1 K 2013-07-28 - 18:50 ClaudioCampagnari  
PDFpdf fig22a.pdf r1 manage 23.5 K 2013-07-12 - 00:14 ClaudioCampagnari  
PNGpng fig22a.png r1 manage 82.3 K 2013-07-12 - 00:14 ClaudioCampagnari  
PDFpdf fig22b.pdf r2 r1 manage 22.5 K 2013-07-28 - 18:52 ClaudioCampagnari  
PNGpng fig22b.png r2 r1 manage 42.9 K 2013-07-28 - 18:52 ClaudioCampagnari  
PDFpdf fig22c.pdf r2 r1 manage 23.3 K 2013-07-28 - 18:52 ClaudioCampagnari  
PNGpng fig22c.png r2 r1 manage 45.8 K 2013-07-28 - 18:52 ClaudioCampagnari  
PDFpdf fig22d.pdf r2 r1 manage 23.4 K 2013-07-28 - 18:52 ClaudioCampagnari  
PNGpng fig22d.png r2 r1 manage 45.0 K 2013-07-28 - 18:52 ClaudioCampagnari  
PDFpdf fig23a.pdf r2 r1 manage 17.3 K 2013-08-01 - 19:40 ClaudioCampagnari  
PNGpng fig23a.png r3 r2 r1 manage 41.8 K 2013-08-01 - 19:40 ClaudioCampagnari  
PDFpdf fig23b.pdf r3 r2 r1 manage 17.5 K 2013-08-01 - 19:40 ClaudioCampagnari  
PNGpng fig23b.png r3 r2 r1 manage 42.0 K 2013-08-01 - 19:40 ClaudioCampagnari  
PDFpdf fig24a.pdf r1 manage 21.7 K 2013-07-12 - 00:06 ClaudioCampagnari  
PNGpng fig24a.png r1 manage 43.0 K 2013-07-12 - 00:06 ClaudioCampagnari  
PDFpdf fig24b.pdf r1 manage 21.5 K 2013-07-12 - 00:06 ClaudioCampagnari  
PNGpng fig24b.png r1 manage 42.9 K 2013-07-12 - 00:06 ClaudioCampagnari  
PDFpdf fig25.pdf r1 manage 15.0 K 2013-07-12 - 00:06 ClaudioCampagnari  
PNGpng fig25.png r1 manage 35.6 K 2013-07-12 - 00:06 ClaudioCampagnari  
PDFpdf fig2a.pdf r1 manage 17.3 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2a.png r1 manage 38.5 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2b.pdf r1 manage 17.2 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2b.png r1 manage 39.7 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2c.pdf r1 manage 19.5 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2c.png r1 manage 45.8 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2d.pdf r1 manage 19.4 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2d.png r1 manage 44.2 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2e.pdf r1 manage 22.2 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2e.png r1 manage 50.0 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2f.pdf r1 manage 18.1 K 2013-07-11 - 15:46 ClaudioCampagnari  
PNGpng fig2f.png r1 manage 39.1 K 2013-07-11 - 15:45 ClaudioCampagnari  
PDFpdf fig2g.pdf r2 r1 manage 17.1 K 2013-07-25 - 07:47 ClaudioCampagnari  
PNGpng fig2g.png r2 r1 manage 37.3 K 2013-07-25 - 07:47 ClaudioCampagnari  
PDFpdf fig2h.pdf r2 r1 manage 19.0 K 2013-08-01 - 02:20 ClaudioCampagnari  
PNGpng fig2h.png r2 r1 manage 43.7 K 2013-08-01 - 02:20 ClaudioCampagnari  
PDFpdf fig2i.pdf r2 r1 manage 17.3 K 2013-07-25 - 07:47 ClaudioCampagnari  
PNGpng fig2i.png r2 r1 manage 16.0 K 2013-07-25 - 07:47 ClaudioCampagnari  
PDFpdf fig3a.pdf r2 r1 manage 125.0 K 2013-07-19 - 01:55 ClaudioCampagnari  
PNGpng fig3a.png r2 r1 manage 109.5 K 2013-07-19 - 01:55 ClaudioCampagnari  
PDFpdf fig3b.pdf r1 manage 57.7 K 2013-07-11 - 15:59 ClaudioCampagnari  
PNGpng fig3b.png r1 manage 88.6 K 2013-07-11 - 15:59 ClaudioCampagnari  
PDFpdf fig3c.pdf r1 manage 58.4 K 2013-07-11 - 15:59 ClaudioCampagnari  
PNGpng fig3c.png r1 manage 101.6 K 2013-07-11 - 15:59 ClaudioCampagnari  
PDFpdf fig3d.pdf r1 manage 58.1 K 2013-07-11 - 15:59 ClaudioCampagnari  
PNGpng fig3d.png r1 manage 91.1 K 2013-07-11 - 15:59 ClaudioCampagnari  
PDFpdf fig4a.pdf r2 r1 manage 17.9 K 2013-07-23 - 06:08 ClaudioCampagnari  
PNGpng fig4a.png r2 r1 manage 35.3 K 2013-07-23 - 06:08 ClaudioCampagnari  
PDFpdf fig4b.pdf r2 r1 manage 18.0 K 2013-07-23 - 06:08 ClaudioCampagnari  
PNGpng fig4b.png r2 r1 manage 35.1 K 2013-07-23 - 06:08 ClaudioCampagnari  
PDFpdf fig4c.pdf r2 r1 manage 18.1 K 2013-07-23 - 06:08 ClaudioCampagnari  
PNGpng fig4c.png r2 r1 manage 34.1 K 2013-07-23 - 06:08 ClaudioCampagnari  
PDFpdf fig4d.pdf r2 r1 manage 18.0 K 2013-07-23 - 06:08 ClaudioCampagnari  
PNGpng fig4d.png r2 r1 manage 34.8 K 2013-07-23 - 06:08 ClaudioCampagnari  
PDFpdf fig5.pdf r1 manage 16.5 K 2013-07-11 - 17:53 ClaudioCampagnari  
PNGpng fig5.png r1 manage 30.8 K 2013-07-11 - 17:53 ClaudioCampagnari  
PDFpdf fig6a.pdf r1 manage 17.1 K 2013-07-11 - 18:02 ClaudioCampagnari  
PNGpng fig6a.png r1 manage 33.4 K 2013-07-11 - 18:01 ClaudioCampagnari  
PDFpdf fig6b.pdf r1 manage 16.3 K 2013-07-11 - 18:02 ClaudioCampagnari  
PNGpng fig6b.png r1 manage 30.7 K 2013-07-11 - 18:01 ClaudioCampagnari  
PDFpdf fig6c.pdf r1 manage 17.7 K 2013-07-11 - 18:02 ClaudioCampagnari  
PNGpng fig6c.png r1 manage 34.7 K 2013-07-11 - 18:01 ClaudioCampagnari  
PDFpdf fig6d.pdf r1 manage 17.1 K 2013-07-11 - 18:02 ClaudioCampagnari  
PNGpng fig6d.png r1 manage 32.2 K 2013-07-11 - 18:01 ClaudioCampagnari  
PDFpdf fig6e.pdf r1 manage 17.8 K 2013-07-11 - 18:02 ClaudioCampagnari  
PNGpng fig6e.png r1 manage 35.7 K 2013-07-11 - 18:01 ClaudioCampagnari  
PDFpdf fig6f.pdf r2 r1 manage 17.7 K 2013-07-19 - 04:05 ClaudioCampagnari  
PNGpng fig6f.png r2 r1 manage 32.9 K 2013-07-19 - 04:05 ClaudioCampagnari  
PDFpdf fig7.pdf r1 manage 17.5 K 2013-07-11 - 18:04 ClaudioCampagnari  
PNGpng fig7.png r1 manage 35.8 K 2013-07-11 - 18:04 ClaudioCampagnari  
PDFpdf fig8a.pdf r1 manage 17.8 K 2013-07-11 - 14:35 ClaudioCampagnari  
PNGpng fig8a.png r1 manage 39.3 K 2013-07-11 - 14:37 ClaudioCampagnari  
PDFpdf fig8b.pdf r1 manage 16.5 K 2013-07-11 - 14:35 ClaudioCampagnari  
PNGpng fig8b.png r1 manage 32.1 K 2013-07-11 - 14:35 ClaudioCampagnari  
PDFpdf fig8c.pdf r1 manage 17.4 K 2013-07-11 - 14:35 ClaudioCampagnari  
PNGpng fig8c.png r1 manage 38.7 K 2013-07-11 - 14:35 ClaudioCampagnari  
PDFpdf fig8d.pdf r1 manage 17.0 K 2013-07-11 - 14:35 ClaudioCampagnari  
PNGpng fig8d.png r1 manage 34.1 K 2013-07-11 - 14:35 ClaudioCampagnari  
PDFpdf fig9a.pdf r1 manage 16.8 K 2013-07-11 - 14:36 ClaudioCampagnari  
PNGpng fig9a.png r1 manage 34.7 K 2013-07-11 - 14:36 ClaudioCampagnari  
PDFpdf fig9b.pdf r1 manage 16.7 K 2013-07-11 - 14:36 ClaudioCampagnari  
PNGpng fig9b.png r1 manage 33.3 K 2013-07-11 - 14:36 ClaudioCampagnari  
PDFpdf fig9c.pdf r1 manage 18.0 K 2013-07-11 - 14:36 ClaudioCampagnari  
PNGpng fig9c.png r1 manage 36.6 K 2013-07-11 - 14:36 ClaudioCampagnari  
PDFpdf fig9d.pdf r1 manage 18.0 K 2013-07-11 - 14:36 ClaudioCampagnari  
PNGpng fig9d.png r1 manage 38.6 K 2013-07-11 - 14:36 ClaudioCampagnari  
PDFpdf figadd1.pdf r1 manage 14.8 K 2013-07-12 - 06:44 ClaudioCampagnari  
PNGpng figadd1.png r1 manage 28.6 K 2013-07-12 - 06:44 ClaudioCampagnari  
PDFpdf figadd10.pdf r1 manage 22.3 K 2013-07-30 - 05:17 ClaudioCampagnari  
PNGpng figadd10.png r1 manage 69.6 K 2013-07-30 - 05:17 ClaudioCampagnari  
PDFpdf figadd11.pdf r1 manage 27.7 K 2013-07-22 - 15:54 BenHooberman  
PNGpng figadd11.png r1 manage 37.2 K 2013-07-22 - 15:54 BenHooberman  
PDFpdf figadd2.pdf r1 manage 14.9 K 2013-07-12 - 06:44 ClaudioCampagnari  
PNGpng figadd2.png r1 manage 26.1 K 2013-07-12 - 06:44 ClaudioCampagnari  
PDFpdf figadd3.pdf r1 manage 15.4 K 2013-07-12 - 06:46 ClaudioCampagnari  
PNGpng figadd3.png r1 manage 30.3 K 2013-07-12 - 06:46 ClaudioCampagnari  
PDFpdf figadd4.pdf r1 manage 14.3 K 2013-07-12 - 06:46 ClaudioCampagnari  
PNGpng figadd4.png r1 manage 26.8 K 2013-07-12 - 06:46 ClaudioCampagnari  
PDFpdf figadd5.pdf r1 manage 15.8 K 2013-07-12 - 06:46 ClaudioCampagnari  
PNGpng figadd5.png r1 manage 33.4 K 2013-07-12 - 06:46 ClaudioCampagnari  
PDFpdf figadd6.pdf r1 manage 17.1 K 2013-07-12 - 06:46 ClaudioCampagnari  
PNGpng figadd6.png r1 manage 27.8 K 2013-07-12 - 06:46 ClaudioCampagnari  
PDFpdf figadd7.pdf r1 manage 23.1 K 2013-07-30 - 05:17 ClaudioCampagnari  
PNGpng figadd7.png r1 manage 78.7 K 2013-07-30 - 05:17 ClaudioCampagnari  
PDFpdf figadd8.pdf r1 manage 23.2 K 2013-07-30 - 05:17 ClaudioCampagnari  
PNGpng figadd8.png r1 manage 77.8 K 2013-07-30 - 05:17 ClaudioCampagnari  
PDFpdf figadd9.pdf r1 manage 23.1 K 2013-07-30 - 05:17 ClaudioCampagnari  
PNGpng figadd9.png r1 manage 73.9 K 2013-07-30 - 05:17 ClaudioCampagnari  
PDFpdf htratio_preselection_mt120.pdf r1 manage 37.4 K 2013-07-12 - 06:47 ClaudioCampagnari  
PNGpng htratio_preselection_mt120.png r1 manage 18.3 K 2013-07-12 - 06:47 ClaudioCampagnari  
PDFpdf makeSummaryPlot_BDT.pdf r3 r2 r1 manage 16.8 K 2013-08-03 - 00:59 BenHooberman  
PNGpng makeSummaryPlot_BDT.png r3 r2 r1 manage 186.7 K 2013-08-03 - 00:59 BenHooberman  
PDFpdf makeSummaryPlot_BDT_T2bw.pdf r1 manage 15.2 K 2013-07-30 - 05:45 ClaudioCampagnari  
PNGpng makeSummaryPlot_BDT_T2bw.png r1 manage 20.6 K 2013-07-30 - 05:45 ClaudioCampagnari  
PDFpdf makeSummaryPlot_BDT_T2tt.pdf r1 manage 15.9 K 2013-07-30 - 05:45 ClaudioCampagnari  
PNGpng makeSummaryPlot_BDT_T2tt.png r1 manage 21.5 K 2013-07-30 - 05:45 ClaudioCampagnari  
PDFpdf mindphi_preselection_mt120.pdf r1 manage 34.8 K 2013-07-12 - 06:47 ClaudioCampagnari  
PNGpng mindphi_preselection_mt120.png r1 manage 17.9 K 2013-07-12 - 06:47 ClaudioCampagnari  
PDFpdf mt2w_preselection_mt120.pdf r1 manage 35.7 K 2013-07-12 - 06:47 ClaudioCampagnari  
PNGpng mt2w_preselection_mt120.png r1 manage 19.1 K 2013-07-12 - 06:47 ClaudioCampagnari  
PDFpdf muon_ID.pdf r1 manage 322.1 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng muon_ID.png r1 manage 94.1 K 2014-05-08 - 20:00 FrankWuerthwein  
PDFpdf muon_trigger_efficiency.pdf r1 manage 50.4 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng muon_trigger_efficiency.png r1 manage 86.5 K 2014-05-08 - 20:00 FrankWuerthwein  
PNGpng stop1.png r1 manage 138.8 K 2013-07-12 - 06:47 ClaudioCampagnari  
PNGpng stop2.png r1 manage 135.9 K 2013-07-12 - 06:47 ClaudioCampagnari  
Unknown file formatgz stop_variables-1.tar.gz r1 manage 9.3 K 2013-07-19 - 21:10 ClaudioCampagnari  
PDFpdf table1.pdf r2 r1 manage 109.1 K 2013-07-19 - 01:55 ClaudioCampagnari  
PNGpng table1.png r2 r1 manage 53.3 K 2013-07-19 - 01:55 ClaudioCampagnari  
PDFpdf table2.pdf r1 manage 106.9 K 2013-07-12 - 05:41 ClaudioCampagnari  
PNGpng table2.png r1 manage 8.6 K 2013-07-12 - 05:41 ClaudioCampagnari  
PDFpdf table3.pdf r2 r1 manage 99.3 K 2013-07-12 - 05:41 ClaudioCampagnari  
PNGpng table3.png r2 r1 manage 6.6 K 2013-07-12 - 05:41 ClaudioCampagnari  
PDFpdf table4.pdf r2 r1 manage 107.4 K 2013-07-12 - 05:41 ClaudioCampagnari  
PNGpng table4.png r2 r1 manage 10.4 K 2013-07-12 - 05:41 ClaudioCampagnari  
PDFpdf table5.pdf r2 r1 manage 89.2 K 2013-07-12 - 05:41 ClaudioCampagnari  
PNGpng table5.png r2 r1 manage 15.2 K 2013-07-12 - 05:41 ClaudioCampagnari  
PDFpdf table6.pdf r2 r1 manage 109.3 K 2013-07-12 - 05:43 ClaudioCampagnari  
PNGpng table6.png r2 r1 manage 14.8 K 2013-07-12 - 05:43 ClaudioCampagnari  
PDFpdf table7.pdf r1 manage 101.4 K 2013-07-12 - 05:43 ClaudioCampagnari  
PNGpng table7.png r1 manage 14.2 K 2013-07-12 - 05:43 ClaudioCampagnari  
PDFpdf table8.pdf r1 manage 101.7 K 2013-07-12 - 05:43 ClaudioCampagnari  
PNGpng table8.png r1 manage 20.9 K 2013-07-12 - 05:43 ClaudioCampagnari  
PDFpdf table9.pdf r1 manage 99.7 K 2013-07-12 - 05:43 ClaudioCampagnari  
PNGpng table9.png r1 manage 14.0 K 2013-07-12 - 05:43 ClaudioCampagnari  
C source code filec topneutralino_BDT.C r1 manage 0.4 K 2013-08-09 - 00:14 VerenaMartinez  
Unknown file formatroot topneutralino_BDT.root r1 manage 11.8 K 2013-08-09 - 00:14 VerenaMartinez  
C source code filec topneutralino_cutbased.C r1 manage 0.4 K 2013-08-09 - 00:14 VerenaMartinez  
Unknown file formatroot topneutralino_cutbased.root r1 manage 13.7 K 2013-08-09 - 00:14 VerenaMartinez  
PDFpdf topneutralino_cutbased_efficiencies.pdf r2 r1 manage 85.4 K 2013-08-01 - 19:42 ClaudioCampagnari  
PNGpng topneutralino_cutbased_efficiencies.png r2 r1 manage 75.2 K 2013-08-01 - 19:42 ClaudioCampagnari  
Unknown file formatroot topneutralino_cutbased_efficiencies.root r1 manage 58.8 K 2013-07-30 - 05:30 ClaudioCampagnari  
Unknown file formatroot topneutralino_polarization.root r1 manage 11.0 K 2013-08-09 - 00:14 VerenaMartinez  
C source code filec topneutralino_righthandedtop_BDT.C r1 manage 0.4 K 2013-08-09 - 00:17 VerenaMartinez  
Unknown file formatroot topneutralino_righthandedtop_BDT.root r1 manage 14.2 K 2013-08-09 - 00:17 VerenaMartinez  
Edit | Attach | Watch | Print version | History: r9 < r8 < r7 < r6 < r5 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r9 - 2014-05-08 - FrankWuerthwein
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CMSPublic All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback