Search for electroweak chargino and neutralino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

Abstract

A search for supersymmetry (SUSY) is presented based on the electroweak pair production of charginos and neutralinos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5fb-1 of proton-proton collisions collected in 2012 by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (MET). A second aspect is chargino-neutralino pair production, leading to hW states with MET. The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric interactions, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values.

Detailed documentation

The paper has been submitted to Phys. Rev. D: http://arxiv.org/abs/1409.3168

Approved tables and plots ( click on plot to get .pdf )

Tables and Plots from the Paper

Section 1) Introduction

Figures Caption
Figure 1: (left) Event diagrams for the SUSY scenarios considered in this analysis. hh production in a GMSB model, with h a Higgs boson, $\tilde{\chi}_{1}^{0}$ a lightest neutralino NLSP, and $\tilde{G}$ is a nearly massless gravitino LSP. The $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ state is created through $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$, and $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}$ production followed by the decay of the $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{\pm}$ states to the $\tilde{\chi}_{1}^{0}$ and undetected SM particles, with $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{\pm}$ the second-lightest neutralino and the lightest chargino, respectively.
Figure 1: (center) Event diagrams for the SUSY scenarios considered in this analysis. hZ production in a GMSB model, with h a Higgs boson, $\tilde{\chi}_{1}^{0}$ a lightest neutralino NLSP, and $\tilde{G}$ is a nearly massless gravitino LSP. The $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}$ state is created through $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{0}$, $\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}$, $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$, and $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}$ production followed by the decay of the $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{\pm}$ states to the $\tilde{\chi}_{1}^{0}$ and undetected SM particles, with $\tilde{\chi}_{2}^{0}$ and $\tilde{\chi}_{1}^{\pm}$ the second-lightest neutralino and the lightest chargino, respectively.
Figure 1: (right) Event diagrams for the SUSY scenarios considered in this analysis. hW production through chargino-neutralino $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ pair creation, with $\tilde{\chi}_{1}^{0}$ a massive neutralino LSP.

Section 5) Search in the hh → bbbb channel

Figures Caption
Figure 2: (top left) Distribution of | $\Delta m_{b\bar{b}}$ | for events in the 4b sample of the h → bbbb analysis, after all signal-region requirements are applied except for that on the displayed variable, in comparison with simulations of background and signal events. For the signal events, results are shown for $\tilde{\chi}_{1}^{0}$ higgsino mass values of 250 and 400 GeV, with an LSP (gravitino) mass of 1 GeV. The background distributions are stacked while the signal distributions are not. The hatched bands indicate the statistical uncertainty of the total SM simulated prediction.
Figure 2: (top right) Distribution of $\Delta R_{max}$ for events in the 4b sample of the h → bbbb analysis, after all signal-region requirements are applied except for that on the displayed variable, in comparison with simulations of background and signal events. For the signal events, results are shown for $\tilde{\chi}_{1}^{0}$ higgsino mass values of 250 and 400 GeV, with an LSP (gravitino) mass of 1 GeV. The background distributions are stacked while the signal distributions are not. The hatched bands indicate the statistical uncertainty of the total SM simulated prediction.
Figure 2: (bottom) Distribution of <$m_{b\bar{b}}$> for events in the 4b sample of the h → bbbb analysis, after all signal-region requirements are applied except for that on the displayed variable, in comparison with simulations of background and signal events. For the signal events, results are shown for $\tilde{\chi}_{1}^{0}$ higgsino mass values of 250 and 400 GeV, with an LSP (gravitino) mass of 1 GeV. The background distributions are stacked while the signal distributions are not. The hatched bands indicate the statistical uncertainty of the total SM simulated prediction.
Figure 3: (top left) Illustration of the signal (SIG) and sideband (SB) regions in the | $\Delta m_{b\bar{b}}$ | vs <$m_{b\bar{b}}$> plane of the hh → bbbb analysis.
Figure 3: (top right) Distribution of simulated $t\bar{t}$ events in the 2b sample. The plot employs an arbitrary integrated luminosity.
Figure 3: (bottom right) Distribution of simulated $t\bar{t}$ events in the 4b sample. The plot employs an arbitrary integrated luminosity.
Figure 3: (bottom left) Distribution of simulated signal events in the 4b sample for a $\tilde{\chi}_{1}^{0}$ higgsino mass value of 250 GeV and an LSP (gravitino) mass of 1 GeV. The plot employs an arbitrary integrated luminosity.
Figure 4: The ratio of the number of events in the signal (SIG) region to that in the sideband (SB) region as a function of $\mathcal{S}_{MET}$ bin (see Table 1), for the 2b, 3b, and 4b event samples of the hh → bbbb analysis. The simulated results account for the various expected SM processes.
Figure 5: Distribution of simulated $t\bar{t}$ ["genuine $E_{T}^{miss}$ (SM)''], signal ["genuine $E_{T}^{miss}$ (SUSY)''], and QCD multijet ("spurious $E_{T}^{miss}$'') events using loosened selection criteria (see text) in bins of $\mathcal{S}_{MET}$ and $E_{T}^{miss}$. The uncertainties are statistical. The bin edges for $E_{T}^{miss}$ have been adjusted so that the number of $t\bar{t}$ events in each bin is about the same as for the corresponding $\mathcal{S}_{MET}$ bin. The signal events correspond to the higgsino pair production scenario of Fig.1 (left) with a higgsino mass of 250 GeV and an LSP (gravitino) mass of 1 GeV.
Figure 6: (left) Observed numbers of events as a function of $E_{T}^{miss}$ significance ($\mathcal{S}_{MET}$) bin for the hh → bbbb analysis, in comparison with the SM background estimate from the likelihood fit, for the 3b-SIG region. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The expected (unstacked) results for signal events, with $\tilde{\chi}_{1}^{0}$ higgsino mass values of 250 and 400 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Figure 6: (right) Observed numbers of events as a function of $E_{T}^{miss}$ significance ($\mathcal{S}_{MET}$) bin for the hh → bbbb analysis, in comparison with the SM background estimate from the likelihood fit, for the 4b-SIG region. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The expected (unstacked) results for signal events, with $\tilde{\chi}_{1}^{0}$ higgsino mass values of 250 and 400 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.

Tables Caption
Table 1: Observed numbers of events and corresponding SM background estimates in bins of $E_{T}^{miss}$-significance $\mathcal{S}_{MET}$ for the hh → bbbb analysis. For the SM background estimate, the first uncertainty is statistical and the second systematic.

Section 6) Search in the hh, hZ, and hW channels with one h → $\gamma\gamma$ decay

Figures Caption
Figure 7: Distribution of diphoton invariant mass $m_{\gamma\gamma}$ after all selection criteria are applied except for that on $m_{\gamma\gamma}$, for the h(→$\gamma\gamma$)h(→bb) search. The result of a fit to a power-law function using data in the sideband regions is indicated by the solid line. The dotted line shows an interpolation of the fitted function into the Higgs boson mass region excluded from the fit. The results of fits to the sideband regions (see text) are indicated by the solid lines. The expected results for hh events, with a $\tilde\chi_{1}^{0}$ higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Figure 8: (left) Observed numbers of events as a function of the scalar sum of $p_{T}$ values of the two Higgs boson candidates, $S_{T}^{h}$, for the hh→$\gamma\gamma$bb analysis, in comparison with the SM background estimate, for a control sample with loose tagging requirements for b jets. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for signal events, with $\tilde\chi_{1}^{0}$ higgsino mass values of 130 and 200 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Figure 8: (right) Observed numbers of events as a function of the scalar sum of $p_{T}$ values of the two Higgs boson candidates, $S_{T}^{h}$, for the hh→$\gamma\gamma$bb analysis, in comparison with the SM background estimate, for the nominal selection. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for signal events, with $\tilde\chi_{1}^{0}$ higgsino mass values of 130 and 200 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Figure 9: (left) Results for the hZ and hW → $\gamma\gamma$+2 jets analysis after all selection criteria are applied except for that on the displayed variable. The expected (unstacked) results for hZ signal events, with the indicated values of the $\tilde\chi_{1}^{0}$ higgsino mass and an LSP (gravitino) mass of 1 GeV, are also shown. The signal has been scaled up 30 fold for demonstration. Distribution of diphoton invariant mass $m_{\gamma\gamma}$. The result of a fit to a power-law function using data in the sideband regions (see text) is indicated by the solid line. The dotted line shows an interpolation of the fitted function into the Higgs boson mass region excluded from the fit.
Figure 9: (right) Results for the hZ and hW → $\gamma\gamma$+2 jets analysis after all selection criteria are applied except for that on the displayed variable. The expected (unstacked) results for hZ signal events, with the indicated values of the $\tilde\chi_{1}^{0}$ higgsino mass and an LSP (gravitino) mass of 1 GeV, are also shown. The signal has been scaled up 30 fold for demonstration. Observed numbers of events as a function of $E_{T}^{miss}$ in comparison with the SM background estimate. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined.
ggMuMgg.png Figure 10: (left) The distribution of diphoton invariant mass $m_{\gamma\gamma}$ after all selection criteria are applied except for that on $m_{\gamma\gamma}$, for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, for the muon sample. The results of fits to the sideband regions (see text) are indicated by the solid lines. The expected results for hh events, with a $\tilde\chi_{1}^{0}$ higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
ggEleMgg.png Figure 10: (right) The distribution of diphoton invariant mass $m_{\gamma\gamma}$ after all selection criteria are applied except for that on $m_{\gamma\gamma}$, for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, for the electron sample. The results of fits to the sideband regions (see text) are indicated by the solid lines. The expected results for hh events, with a $\tilde\chi_{1}^{0}$ higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
ggMuMT.png Figure 11: (left) Observed numbers of events as a function of transverse mass MT for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, in comparison with the (stacked) SM background estimates, for the (left) muon and (right) electron samples. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for various signal scenarios are also shown. For the hh and hZ scenarios, the higgsino mass is 130 GeV and the LSP (gravitino) mass is 1 GeV. For the hW scenario, $m_{\tilde\chi_{2}^{0}}$ = $m_{\tilde\chi_{1}^{\pm}}$ = 130 GeV and $m_{\tilde\chi_{1}^{0}}$ = 1 GeV [see Fig. 1 (right)].
ggEleMT.png Figure 11: (right) Observed numbers of events as a function of transverse mass MT for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, in comparison with the (stacked) SM background estimates, for the (left) muon and (right) electron samples. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for various signal scenarios are also shown. For the hh and hZ scenarios, the higgsino mass is 130 GeV and the LSP (gravitino) mass is 1 GeV. For the hW scenario, $m_{\tilde\chi_{2}^{0}}$ = $m_{\tilde\chi_{1}^{\pm}}$ = 130 GeV and $m_{\tilde\chi_{1}^{0}}$ = 1 GeV [see Fig. 1 (right)].
ggMuMT.png Figure 12: (left) Observed numbers of events as a function of $E_{T}^{miss}$ for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, in comparison with the (stacked) SM background estimates, for the (left) muon and (right) electron samples. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for various signal scenarios are also shown. For the hh and hZ scenarios, the higgsino mass is 130 GeV and the LSP (gravitino) mass is 1 GeV. For the hW scenario, $m_{\tilde\chi_{2}^{0}}$ = $m_{\tilde\chi_{1}^{\pm}}$ = 130 GeV and $m_{\tilde\chi_{1}^{0}}$ = 1 GeV [see Fig. 1 (right)].
ggEleMT.png Figure 12: (right) Observed numbers of events as a function of $E_{T}^{miss}$ for the hh, hZ, and hW → $\gamma\gamma$+leptons analysis, in comparison with the (stacked) SM background estimates, for the (left) muon and (right) electron samples. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined. The (unstacked) results for various signal scenarios are also shown. For the hh and hZ scenarios, the higgsino mass is 130 GeV and the LSP (gravitino) mass is 1 GeV. For the hW scenario, $m_{\tilde\chi_{2}^{0}}$ = $m_{\tilde\chi_{1}^{\pm}}$ = 130 GeV and $m_{\tilde\chi_{1}^{0}}$ = 1 GeV [see Fig. 1 (right)].

Tables Caption
Table 2: Observed numbers of events and corresponding SM background estimates, in bins of Higgs-boson-candidate variable $S^{\rm h}_{\rm T}$ (see text), for the hh → γγbb analysis. The uncertainties shown for the SM background estimates are the combined statistical and systematic terms. The expected yields for signal events, with a higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Table 3: Observed numbers of events and corresponding SM background estimates, in bins of missing transverse energy $E^{\rm miss}_{\rm T}$, for the hV → γγ+2 jets analysis, where V represents a W or Z boson. The uncertainties shown for the SM background estimates are the combined statistical and systematic terms. The expected yields for hZ signal events, with a higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV, are also shown.
Table 4: Observed numbers of events and corresponding SM background estimates, in bins of transverse mass $M_{\rm T}$, for the hh, hZ, and hW → γγ+leptons analysis. The column labeled “hW events” shows the expected number of events from the chargino-neutralino pair-production process of Fig.1(right), taking $m_{\tilde \chi^0_2} = m_{ \tilde \chi^\pm_1} =130$ GeV and $m_{\tilde \chi^0_1} = 1$ GeV.

Section 7) Search in the hZ channel with h → bb and Z → $\ell^{+}\ell^{-}$

Figures Caption
Figure 13: Distribution of $M_{T2}^{j\ell}$ for the h(→bb)Z(→$\ell^{+}\ell^{-}$ analysis after all signal-region requirements are applied except for that on $M_{T2}^{j\ell}$, in comparison with (stacked) SM background estimates taken from simulation. For this result, $E_{T}^{miss}$ > 60 GeV. The (unstacked) signal results for a higgsino mass of 200 GeV and an LSP (gravitino) mass of 1 GeV are also shown.
Figure 14: (left) The distribution of $E_{T}^{miss}$ in comparison with the (stacked) SM background estimates for the h(→bb)Z(→$\ell^{+}\ell^{-}$) analysis, for a data control sample enriched in SM Z+jets events. The hatched bands in the ratio plots (lower panels) indicate the uncertainty of the total background prediction, with statistical and systematic terms combined.
Figure 14: (right) The distribution of $E_{T}^{miss}$ in comparison with the (stacked) SM background estimates for the h(→bb)Z(→$\ell^{+}\ell^{-}$) analysis, for a data control sample enriched in SM $t\bar{t}$ events. The hatched bands in the ratio plots (lower panels) indicate the uncertainty of the total background prediction, with statistical and systematic terms combined.
Figure 15: Observed numbers of events as a function of $E_{T}^{miss}$ for the h(→bb)Z(→$\ell^{+}\ell^{-}$) analysis, in comparison with the (stacked) SM background estimates. The (unstacked) results for a $m_{\tilde\chi_{1}^{0}}$ higgsino mass of 200 GeV and an LSP (gravitino) mass of 1 GeV are also shown. The hatched band in the ratio plot (lower panel) indicates the uncertainty of the total background prediction, with statistical and systematic terms combined.

Tables Caption
Table 5: Observed numbers of events and corresponding SM background estimates, in bins of missing transverse energy $E^{\rm miss}_{\rm T}$, for the h(→ bb)Z(→ l+l−) analysis. The uncertainties shown for the SM background estimates are the combined statistical and systematic terms. For bins with $E^{\rm miss}_{\rm T} > 60$ GeV, signal event yields are given for four values of the $\tilde \chi^0_1$ higgsino mass, with an LSP (gravitino) mass of 1 GeV.

Section 8) Search in channels with three or more leptons or with a ZZ → $\ell^{+}\ell^{-}$ + 2 jets combination

Tables Caption
Table 6: The seven most sensitive search channels of the three-or-more lepton analysis for the $\tilde \chi^0_1(\rightarrow h \tilde G) \tilde \chi^0_1(\rightarrow h \tilde G)$ di-higgsino production scenario assuming a higgsino mass of 150 GeV and an LSP (gravitino) mass of 1 GeV. For all channels, $H_{\rm T} < 200$ GeV and the number of tagged b jets is zero. The symbols $N_{\ell}$, $N_{\tau_{\rm h}}$ , and $N_{\rm OSSF}$ indicate the number of charged leptons, hadronically decaying τ-lepton candidates, and opposite-sign same-flavor (OSSF) lepton pairs, respectively. “Below-Z” means that the invariant mass mll of the OSSF pair (if present) lies below the region of the Z boson ($m_{\ell\ell} < 75$ GeV), while “Off-Z” means that either $m_{\ell\ell} < 75$ GeV or $m_{\ell\ell} > 105$ GeV. The uncertainties shown for the SM background estimates are the combined statistical and systematic terms, while those shown for signal events are statistical. The channels are ordered according to the values of $N_{\ell}$, $N_{\tau_{h}}$, $N_{OSSF}$, and $E_{T}^{miss}$.

Section 9) Systematic uncertainties

Tables Caption
Table 7: Typical values of the systematic uncertainty for signal efficiency, in percentage.

Section 10) Interpretation

Figures Caption
Figure 16: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the combined bbbb, $\gamma\gamma$bb, $\gamma\gamma$+leptons, and three-or-more lepton channels. The green, yellow, and orange bands indicate the one-, two-, and three-standard-deviation uncertainty intervals, respectively, for the expected results. The theoretical cross section and the expected curves for the individual search channels are also shown.
Figure 17: (top) Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the ZZ topology as a function of the higgsino mass for the combined three-or-more lepton and $\ell^+\ell^-$+2~jets channels. The green and yellow bands indicate the one- and two-standard-deviation uncertainty intervals, respectively, for the expected results. The theoretical cross section and the expected curves for the individual search channels are also shown.
Figure 17: (bottom) Corresponding results for the hZ topology, assuming the ${\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and ${\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and ZZ events, for the individual and combined $\gamma\gamma$+leptons, bb$\ell^+\ell^-$, and three-or-more-lepton channels.
Figure 18: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, with all channels combined, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Figure 19: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production as a function of the higgsino mass assuming the ${\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and ${\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, including contributions from hh and ZZ events, for the combined bbbb, $\gamma\gamma$bb, $\gamma\gamma$+leptons, bb$\ell^+\ell^-$, three-or-more lepton, and $\ell^+\ell^-$+2 jets channels. The green and yellow bands indicate the one- and two-standard-deviation uncertainty intervals, respectively, for the expected results. The theoretical cross section and the expected curves for the individual search channels are also shown.
Figure 20: (top) Observed 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the plane of the higgsino branching fraction to a Higgs boson and the LSP, versus the higgsino mass, with each principal search channel group removed in turn from the combination.
Figure 20: (bottom) Expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the plane of the higgsino branching fraction to a Higgs boson and the LSP, versus the higgsino mass, with each principal search channel group removed in turn from the combination.
Figure 21: The search channel that provides the most stringent 95% CL upper limit on $\tilde{\chi}_{1}^{0}$ higgsino pair production in the plane of the higgsino branching fraction to a Higgs boson and the LSP, versus the higgsino mass.
Figure 22: (top) Observed and expected 95\% confidence level (CL) upper limits on the cross section for electroweak chargino-neutralino $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ pair production (with $m_{\tilde{\chi}_{2}^{0}} = m_{\tilde{\chi}_{1}^{\pm}}$) as a function of the LSP and $\tilde{\chi}_{2}^{0}$ masses for the combined results on single-lepton, same-sign dilepton, and multilepton data from Ref. [34] with the diphoton data presented here.
Figure 22: (bottom) Corresponding results as a function of the $\tilde{\chi}_{2}^{0}$ mass for an LSP mass of 1 GeV. The green band indicates the one-standard-deviation interval. The theoretical cross section is also shown.
Figure 23: (top left) Observed and expected 95% confidence level (CL) upper limits on the cross section for chargino-neutralino $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ pair production (with $m_{\tilde{\chi}_{2}^{0}} = m_{\tilde{\chi}_{1}^{\pm}}$) as a function of $\tilde{\chi}_{2}^{0}$ mass assuming an LSP mass of 1 GeV for the $\gamma\gamma$ + 2 jets study of Section 6.2. The green and yellow bands indicate the one- and two-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.
Figure 23: (top right) Observed and expected 95% confidence level (CL) upper limits on the cross section for chargino-neutralino $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ pair production (with $m_{\tilde{\chi}_{2}^{0}} = m_{\tilde{\chi}_{1}^{\pm}}$) as a function of $\tilde{\chi}_{2}^{0}$ mass assuming an LSP mass of 1 GeV for the $\gamma\gamma$ + muon study of Section 6.3. The green and yellow bands indicate the one- and two-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.
Figure 23: (bottom) Observed and expected 95% confidence level (CL) upper limits on the cross section for chargino-neutralino $\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}$ pair production (with $m_{\tilde{\chi}_{2}^{0}} = m_{\tilde{\chi}_{1}^{\pm}}$) as a function of $\tilde{\chi}_{2}^{0}$ mass assuming an LSP mass of 1 GeV for the $\gamma\gamma$ + electron study of Section 6.3. The green and yellow bands indicate the one- and two-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.

Appendix A) Event selection flow tables

Tables Caption
Table 8: Number of signal events remaining after each stage of the event selection for the hh → bbbb search, with a higgsino mass of 250 GeV and an LSP (gravitino) mass of 1 GeV. The results are normalized to an integrated luminosity of 19.3 ${\rm fb}^{−1}$ using NLO+NLL calculations. The uncertainties are statistical. “$S_{\rm MET}$ bin 0” corresponds to $0 < S_{\rm MET} < 30$. The baseline selection accounts for the primary vertex criteria and for quality requirements applied to the $E^{\rm miss}_{\rm T}$ distribution. This search is described in Section 5.
Table 9: Number of signal events remaining after each stage of the event selection for the hh → bbbb search, with a higgsino mass of 400 GeV and an LSP (gravitino) mass of 1 GeV. The results are normalized to an integrated luminosity of 19.3 ${\rm fb}^{−1}$ using NLO+NLL calculations. The uncertainties are statistical. “$S_{\rm MET}$ bin 0” corresponds to $0 < S_{\rm MET} < 30$. The baseline selection accounts for the primary vertex criteria and for quality requirements applied to the $E^{\rm miss}_{\rm T}$ distribution. This search is described in Section 5.
Table 10: Number of signal events remaining after each stage of the event selection for the hh → γγbb search, described in Section 6.1, and for the hZ and hW → γγ+2 jets search, described in Section 6.2. The hh and hZ scenarios assume a higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV. For the hW scenario, $m_{\tilde \chi^\pm_1} = m_{\tilde \chi^0_2} = 130$ GeV and the LSP $(\tilde \chi^0_1)$ mass is 1GeV. The results are normalized to an integrated luminosity of $19.7\ {\rm fb}^{-1}$ using NLO+NLL calculations for the hh and hZ results and NLO calculations for uncertainties are statistical.
Table 11: Number of signal events remaining after each stage of the event selection for the hh and hW → γγ+leptons searches. The hh scenario assumes a higgsino mass value of 130 GeV and an LSP (gravitino) mass of 1 GeV. For the hW scenario, $m_{\tilde \chi^\pm_1} = m_{\tilde \chi^0_2} = 130$ GeV and the LSP $(\tilde \chi^0_1)$ mass is 1 GeV. The results are normalized to an integrated luminosity of $19.5\ {\rm fb}^{-1}$ using NLO+NLL calculations for the hh results and NLO calculations for the hW results. The uncertainties are statistical. The baseline selection accounts for the primary vertex criteria and for quality requirements applied to the $E^{\rm miss}_{\rm T}$ distribution. This search is described in Section 6.3.
Table 12: Number of signal events remaining after each stage of the event selection for the hZ search with h → bb and Z → l+l−, with higgsino mass values of 130 and 200 GeV and an LSP (gravitino) mass of 1 GeV. The results are normalized to an integrated luminosity of $19.5\ {\rm fb}^{−1}$ using NLO+NLL calculations. The uncertainties are statistical. The baseline selection accounts for the primary vertex criteria and for quality requirements applied to the $E^{\rm miss}_{\rm T}$ distribution. This search is described in Section 7.

Additional Material, Electronic version of interpretations and acceptance maps

Search in the hh → bbbb channel

Figures Caption
Alternative version of Figure 4, showing only the simulation results.
3b signal efficiency Text file containing signal efficiency (in percent) for each of the bins of $S_{MET}$ for the 3b Higgs-mass signal region
4b signal efficiency Text file containing signal efficiency (in percent) for each of the bins of $S_{MET}$ for the 4b Higgs-mass signal region

Search in the hh, hZ, and hW channels with one h → $\gamma\gamma$ decay

Figures Caption
Exclusive_DataInvMassFit_powLaw_fullRange.png Data di-photon invariant mass for inclusive $\gamma\gamma$ selection, with power law fit and Higgs tag window and sideband regions shown.
ggMet_InvarMassCuts_BERNfit.png Observed numbers of events as a function of missing transverse energy MET, in comparison with the (stacked) SM background estimates, for an inclusive $\gamma\gamma$ selection. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined.
SigCompFulllog_MET_2JewkMjjgbar2lep0notH_smh.png Results for the hZ and hW → $\gamma\gamma$+2 jets analysis after all selection criteria are applied except for that on the displayed variable. The full standard model Higgs background is shown in green. The expected (unstacked) results for hZ signal events, with the indicated values of the $\tilde\chi_{1}^{0}$ higgsino mass and an LSP (gravitino) mass of 1 GeV, are also shown. The signal has been scaled up 30 fold for demonstration. Observed numbers of events as a function of $E_{T}^{miss}$ in comparison with the SM background estimate. The hatched bands show the total uncertainty of the background prediction, with statistical and systematic terms combined.

Efficiency files for both gg+Lepton selections, for hW, hZ and hh cases, binned as a function of $M_{T}$. Efficiencies contain photon and lepton identification scale factors. They do not contain signal cross sections. The proper way to use these mappings would be to scale a given histogram by the signal production cross section and desired integrated luminosity. The name includes the NLSP and LSP mass, the production mechanism, and the selection.

Search in the hW channel, all investigated decay modes combined

The electronic version of the limits is located here. The file contains two-dimensional histograms with the 95% observed and expected limits in the mass parameter plane.

Search in the hZ channel with h → bb and Z → $\ell^{+}\ell^{-}$

The efficiency map for this analysis is located here. The file contains 1 histogram for each signal region defined by successive cuts in MET. The total efficiency includes the lepton efficiency, trigger efficiency, and analysis selection efficiency.

Figures Caption
Additional Figure: $E_{T}^{miss}$ distribution for events passing the full signal selection except with $m_{b\bar{b}}$ > 150 GeV. This is one of 7 control regions defined in order to validate the BG prediction methods. This region is populated by background events with similar composition and kinematics to the signal region, with higher statistics.
Additional Figure: The $m_{b\bar{b}}$ distribution with all signal requirements applied in the $E_{T}^{miss}$ > 60 GeV signal region except that on $m_{b\bar{b}}$ . The distribution for hZ signal with higgsino mass $m_{\tilde{\chi}_{0}^{1}}$ = 200 GeV is overlaid. The BG predictions in this plot are taken purely from simulation and normalized using the x-section. Additionally, the distribution labelled Z+Jets MC contains only events where a single Z boson is produced along with jets. Multi-boson and other rare SM processes with a Z boson are all included in the distribution labelled rare SM MC. The overflow and underflow are contained in the last and first bins respectively.
Additional Figure: $\gamma$+jets templates used to model the Z+jets background. The uncertainties shown are statistical.
Additional Figure: Probability factor (K) for an e$\mu$ event to fall in the Z mass window, 81 < $m_{\ell\ell}$ < 101, for data and simulation as a function of $E_{T}^{miss}$. This plot is used to derive the central value and uncertainty for K, 0.11 $\pm$ 0.033.

Interpretation

Figures Caption
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the three-or-more lepton channel. The green, yellow, and orange bands indicate one-, two-, and three-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the hh → bbbb channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the combined hh → bbbb and three-or-more lepton channels. The green, yellow, and orange bands indicate one-, two-, and three-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the $\gamma\gamma$bb channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the combined hh → bbbb, $\gamma\gamma$bb and three-or-more lepton channels. The green, yellow, and orange bands indicate one-, two-, and three-standard-deviation uncertainty intervals, respectively. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the $\gamma\gamma$+electron channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for the $\gamma\gamma$+muon channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hh topology as a function of the higgsino mass for all analyses combined. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the three-or-more-lepton channel.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the bb$\ell^+\ell^-$ channel.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the combined bb$\ell^+\ell^-$ and three-or-more-lepton channels.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the h → $\gamma\gamma$+electron channel.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the h → $\gamma\gamma$+muon channel.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the hZ topology assuming the $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ branching fractions each to be 0.5, ignoring contributions from hh and hZ events, for the combined h → $\gamma\gamma$+leptons, bb$\ell^+\ell^-$, and three-or-more-lepton channels.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the ZZ topology as a function of the higgsino mass for the three-or-more-lepton channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the ZZ topology as a function of the higgsino mass for the ZZ → $\ell^+\ell^-$+2 jets channel. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production in the ZZ topology as a function of the higgsino mass for the individual and combined ZZ → $\ell^+\ell^-$+2 jets and three-or-more-lepton channels. The green band indicates the one-standard-deviation uncertainty interval. The theoretical cross section is also shown.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, using the three-or-more lepton channel, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, using the combined hh → bbbb and three-or-more lepton channels, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, using the combined hh → bbbb, hZ → bb$\ell^+\ell^-$, and three-or-more lepton channels, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, using the combined hh → bbbb $\gamma\gamma$bb, hZ → bb$\ell^+\ell^-$, and three-or-more lepton channels, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Additional Figure: Observed and expected 95% confidence level (CL) upper limits on the cross section for higgsino pair production, using the combined hh → bbbb $\gamma\gamma$bb, hZ → bb$\ell^+\ell^-$, ZZ → $\ell^+\ell^-$+2 jets, and three-or-more lepton channels, in the plane of the higgsino branching fraction to a Higgs boson and LSP, versus the higgsino mass. The green band indicates the one-standard-deviation uncertainty interval.
Additional Table: The top 10 most sensitive channels in the three-or-more lepton analysis for a (150,50) GeV smuon/stau in the stauNLSP scenario from SUS-13-002. All channels have 0 b-tagged jets.
Additional Table: The top 10 most sensitive channels in the three-or-more lepton analysis for a 150 GeV Higgsino and BR(NLSP $\rightarrow$ h + LSP) = 1.0. All channels have 0 b-tagged jets.
Additional Table: The top 10 most sensitive channels in the three-or-more lepton analysis for a 250 GeV Higgsino and BR(NLSP $\rightarrow$ h + LSP) = 1.0. All channels have 0 b-tagged jets.
Additional Table: The top 10 most sensitive channels in the three-or-more lepton analysis for a 400 GeV Higgsino and BR(NLSP $\rightarrow$ h + LSP) = 1.0. All channels have 0 b-tagged jets.
Additional Figure: A mapping of the most discrepant channels in the three-or-more lepton analysis for the 150 GeV mass point in the Higgsino hh topology, to the most discrepant channels of the stauNLSP (150,50) mass point from SUS-13-002.

Electronic Version of Limits for hh Topology

The files all contain two-dimensional histograms with the 95% observed and expected limits in the plane of the higgsino branching fraction to a Higgs boson and LSP versus the higgsino mass (as in Figure 15). For entries with multiple channels are listed, they are combined to obtain the limits.

File Channels
file $\geq$3$\ell$
file 4b
file $\geq$3$\ell$, 4b
file 2$\gamma$2b
file $\geq$3$\ell$, 4b, 2$\gamma$2b
file 2$\gamma$+e
file 2$\gamma$+$\mu$
file $\geq$3$\ell$, 4b, 2$\gamma$2b +2$\gamma$+$\ell$

Electronic Version of Limits for hZ Topology

The files all contain two-dimensional histograms with the 95% observed and expected limits in the plane of the higgsino branching fraction to a Higgs boson and LSP versus the higgsino mass (as in Figure 15). For entries with multiple channels are listed, they are combined to obtain the limits. Only hZ events are included, and the limits have been weighted down by 0.5 to account for the branching fractions of $m_{\tilde\chi_{1}^{0}}$ → h$\tilde{G}$ and $m_{\tilde\chi_{1}^{0}}$ → Z$\tilde{G}$ each being 0.5.

File Channels
file $\geq$3$\ell$
file bb$\ell^+\ell^-$
file $\geq$3$\ell$, bb$\ell^+\ell^-$
file 2$\gamma$+e
file 2$\gamma$+$\mu$
file $\geq$3$\ell$, bb$\ell^+\ell^-$, 2$\gamma$+$\ell$

Electronic Version of Limits for ZZ Topology

The files all contain two-dimensional histograms with the 95% observed and expected limits in the plane of the higgsino branching fraction to a Higgs boson and LSP versus the higgsino mass (as in Figure 15). For entries with multiple channels are listed, they are combined to obtain the limits.

File Channels
file $\geq$3$\ell$
file $\ell^+\ell^-$+2j
file $\geq$3$\ell$, $\ell^+\ell^-$+2j

Electronic Version of Limits for Varying Branching Fraction

The files all contain two-dimensional histograms with the 95% observed and expected limits in the plane of the higgsino branching fraction to a Higgs boson and LSP versus the higgsino mass (as in Figure 15). For entries with multiple channels are listed, they are combined to obtain the limits.

File Channels
file $\geq$3$\ell$
file $\geq$3$\ell$, 4b
file $\geq$3$\ell$, 4b, bb$\ell^+\ell^-$
file $\geq$3$\ell$, 4b, bb$\ell^+\ell^-$, 2$\gamma$2b
file $\geq$3$\ell$, 4b, bb$\ell^+\ell^-$, 2$\gamma$2b, $\ell^+\ell^-$+2j
file all

Topic attachments
I Attachment History Action Size Date Who Comment
PDFpdf 2a2b_1.0.pdf r1 manage 16.9 K 2014-06-13 - 06:59 PatrickZywicki  
PNGpng 2a2b_1.0.png r1 manage 28.0 K 2014-06-13 - 06:59 PatrickZywicki  
PDFpdf 2a2b_1.0_v2.pdf r1 manage 17.4 K 2014-06-27 - 23:15 PatrickZywicki  
PNGpng 2a2b_1.0_v2.png r1 manage 105.7 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf 2a2l_0.5_Ele.pdf r2 r1 manage 17.1 K 2014-06-16 - 00:02 PatrickZywicki  
PNGpng 2a2l_0.5_Ele.png r2 r1 manage 29.4 K 2014-06-16 - 00:02 PatrickZywicki  
PNGpng 2a2l_0.5_Ele_v2.png r1 manage 124.9 K 2014-06-27 - 23:37 PatrickZywicki  
PDFpdf 2a2l_0.5_Ele_v3.pdf r1 manage 17.9 K 2014-06-29 - 21:35 PatrickZywicki  
PNGpng 2a2l_0.5_Ele_v3.png r1 manage 37.2 K 2014-06-29 - 21:35 PatrickZywicki  
PNGpng 2a2l_0.5_Ele_v4.png r1 manage 37.3 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf 2a2l_0.5_Mu.pdf r2 r1 manage 17.1 K 2014-06-16 - 00:02 PatrickZywicki  
PNGpng 2a2l_0.5_Mu.png r2 r1 manage 28.4 K 2014-06-16 - 00:02 PatrickZywicki  
PDFpdf 2a2l_0.5_Mu_v2.pdf r1 manage 17.9 K 2014-06-27 - 23:37 PatrickZywicki  
PNGpng 2a2l_0.5_Mu_v2.png r1 manage 115.8 K 2014-06-27 - 23:37 PatrickZywicki  
PDFpdf 2a2l_0.5_Mu_v3.pdf r1 manage 17.9 K 2014-09-14 - 22:23 PatrickZywicki  
PNGpng 2a2l_0.5_Mu_v3.png r1 manage 36.6 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf 2a2l_1.0_Ele.pdf r2 r1 manage 16.9 K 2014-06-16 - 00:02 PatrickZywicki  
PNGpng 2a2l_1.0_Ele.png r2 r1 manage 27.9 K 2014-06-16 - 00:02 PatrickZywicki  
PDFpdf 2a2l_1.0_Ele_v2.pdf r1 manage 17.4 K 2014-06-27 - 23:15 PatrickZywicki  
PNGpng 2a2l_1.0_Ele_v2.png r1 manage 108.4 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf 2a2l_1.0_Ele_v3.pdf r1 manage 17.5 K 2014-09-14 - 22:23 PatrickZywicki  
PNGpng 2a2l_1.0_Ele_v3.png r1 manage 33.1 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf 2a2l_1.0_Mu.pdf r2 r1 manage 16.9 K 2014-06-16 - 00:02 PatrickZywicki  
PNGpng 2a2l_1.0_Mu.png r2 r1 manage 28.2 K 2014-06-16 - 00:02 PatrickZywicki  
PDFpdf 2a2l_1.0_Mu_v2.pdf r1 manage 17.5 K 2014-06-27 - 23:15 PatrickZywicki  
PNGpng 2a2l_1.0_Mu_v2.png r1 manage 104.8 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf 2a2l_1.0_Mu_v3.pdf r1 manage 17.5 K 2014-09-14 - 22:23 PatrickZywicki  
PNGpng 2a2l_1.0_Mu_v3.png r1 manage 32.9 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf 2b2l_unphysical_0.5.pdf r1 manage 16.8 K 2014-06-13 - 07:01 PatrickZywicki  
PNGpng 2b2l_unphysical_0.5.png r1 manage 22.1 K 2014-06-13 - 07:01 PatrickZywicki  
PDFpdf 2b2l_unphysical_0.5_v2.pdf r1 manage 17.7 K 2014-06-27 - 23:37 PatrickZywicki  
PNGpng 2b2l_unphysical_0.5_v2.png r1 manage 118.9 K 2014-06-27 - 23:37 PatrickZywicki  
PDFpdf 2b2l_unphysical_0.5_v3.pdf r1 manage 17.7 K 2014-06-29 - 21:35 PatrickZywicki  
PNGpng 2b2l_unphysical_0.5_v3.png r1 manage 39.1 K 2014-06-29 - 21:35 PatrickZywicki  
PDFpdf 2l2j_0.0.pdf r1 manage 16.8 K 2014-06-13 - 07:03 PatrickZywicki  
PNGpng 2l2j_0.0.png r1 manage 22.8 K 2014-06-13 - 07:03 PatrickZywicki  
PDFpdf 2l2j_0.0_v2.pdf r1 manage 17.4 K 2014-06-27 - 23:52 PatrickZywicki  
PNGpng 2l2j_0.0_v2.png r1 manage 112.3 K 2014-06-27 - 23:52 PatrickZywicki  
PDFpdf 2l2j_0.0_v3.pdf r1 manage 17.4 K 2014-08-15 - 18:54 PatrickZywicki  
PNGpng 2l2j_0.0_v3.png r1 manage 36.9 K 2014-08-15 - 18:54 PatrickZywicki  
PDFpdf 4b_1.0.pdf r1 manage 15.4 K 2014-06-13 - 06:59 PatrickZywicki  
PNGpng 4b_1.0.png r1 manage 30.3 K 2014-06-27 - 22:44 PatrickZywicki  
PDFpdf 4b_1.0_v2.pdf r1 manage 16.0 K 2014-06-27 - 22:44 PatrickZywicki  
PNGpng 4b_1.0_v2.png r1 manage 112.5 K 2014-06-27 - 22:47 PatrickZywicki  
PDFpdf All_HZ_half_overlay_2x.pdf r1 manage 21.6 K 2014-06-11 - 23:31 DominickOlivito  
PNGpng All_HZ_half_overlay_2x.png r1 manage 44.4 K 2014-06-11 - 23:31 DominickOlivito  
PDFpdf All_pure_ZZ_overlay_2x.pdf r1 manage 20.4 K 2014-06-11 - 23:31 DominickOlivito  
PNGpng All_pure_ZZ_overlay_2x.png r1 manage 36.3 K 2014-06-11 - 23:31 DominickOlivito  
PDFpdf All_sliding_2x.pdf r2 r1 manage 28.9 K 2014-06-17 - 03:12 PatrickZywicki  
PNGpng All_sliding_2x.png r2 r1 manage 15.9 K 2014-06-17 - 03:12 PatrickZywicki  
PDFpdf EHiggsMETBlinded.pdf r3 r2 r1 manage 16.8 K 2014-08-15 - 18:42 DominickOlivito  
PNGpng EHiggsMETBlinded.png r3 r2 r1 manage 40.3 K 2014-08-15 - 18:43 DominickOlivito  
PDFpdf Efficiency_plot_exc_2btag_mt2jhi_inclusive.pdf r1 manage 14.3 K 2014-06-16 - 21:08 CharlesWelke K-Factor and MET templates.
PNGpng Efficiency_plot_exc_2btag_mt2jhi_inclusive.png r1 manage 96.7 K 2014-06-16 - 21:48 CharlesWelke png version
PDFpdf Excess_Map.pdf r1 manage 57.6 K 2014-06-17 - 04:58 PatrickZywicki  
PNGpng Excess_Map.png r1 manage 35.6 K 2014-06-17 - 04:58 PatrickZywicki  
PDFpdf Exclusive_DataInvMassFit_powLaw_fullRange.pdf r2 r1 manage 21.1 K 2014-06-19 - 11:39 DavidMorse Diphoton invariant mass for inclusive di-photon selection
PNGpng Exclusive_DataInvMassFit_powLaw_fullRange.png r2 r1 manage 29.9 K 2014-06-19 - 11:39 DavidMorse Diphoton invariant mass for inclusive di-photon selection
PDFpdf Exclusive_WeDataInvMassFit_powLaw.pdf r6 r5 r4 r3 r2 manage 18.1 K 2014-09-12 - 11:01 DominickOlivito  
PNGpng Exclusive_WeDataInvMassFit_powLaw.png r6 r5 r4 r3 r2 manage 21.0 K 2014-09-12 - 11:01 DominickOlivito  
PDFpdf Exclusive_WeDataMTWithRatio_linear.pdf r4 r3 r2 r1 manage 16.1 K 2014-09-12 - 11:02 DominickOlivito  
PNGpng Exclusive_WeDataMTWithRatio_linear.png r4 r3 r2 r1 manage 39.5 K 2014-09-12 - 11:02 DominickOlivito  
PDFpdf Exclusive_WeDataMetWithRatio_linear.pdf r1 manage 16.7 K 2014-09-12 - 11:13 DominickOlivito  
PNGpng Exclusive_WeDataMetWithRatio_linear.png r1 manage 39.9 K 2014-09-12 - 11:13 DominickOlivito  
PDFpdf Exclusive_WmuDataInvMassFit_powLaw.pdf r6 r5 r4 r3 r2 manage 17.9 K 2014-09-12 - 11:02 DominickOlivito  
PNGpng Exclusive_WmuDataInvMassFit_powLaw.png r6 r5 r4 r3 r2 manage 20.6 K 2014-09-12 - 11:02 DominickOlivito  
PDFpdf Exclusive_WmuDataMTWithRatio_linear.pdf r4 r3 r2 r1 manage 16.4 K 2014-09-12 - 11:02 DominickOlivito  
PNGpng Exclusive_WmuDataMTWithRatio_linear.png r4 r3 r2 r1 manage 41.2 K 2014-09-12 - 11:02 DominickOlivito  
PDFpdf Exclusive_WmuDataMetWithRatio_linear.pdf r1 manage 16.7 K 2014-09-12 - 11:13 DominickOlivito  
PNGpng Exclusive_WmuDataMetWithRatio_linear.png r1 manage 42.4 K 2014-09-12 - 11:13 DominickOlivito  
PDFpdf Expected_Sliding_Overlay.pdf r2 r1 manage 15.2 K 2014-06-17 - 03:34 PatrickZywicki  
PNGpng Expected_Sliding_Overlay.png r2 r1 manage 38.1 K 2014-06-17 - 03:34 PatrickZywicki  
PDFpdf Higgsino_150_Top10.pdf r1 manage 24.5 K 2014-06-16 - 05:52 PatrickZywicki  
PNGpng Higgsino_150_Top10.png r2 r1 manage 74.9 K 2014-06-16 - 05:36 PatrickZywicki  
PDFpdf Higgsino_250_Top10.pdf r1 manage 24.6 K 2014-06-16 - 05:51 PatrickZywicki  
PNGpng Higgsino_250_Top10.png r1 manage 36.6 K 2014-06-16 - 05:36 PatrickZywicki  
PDFpdf Higgsino_400_Top10.pdf r1 manage 24.6 K 2014-06-16 - 05:51 PatrickZywicki  
PNGpng Higgsino_400_Top10.png r1 manage 76.2 K 2014-06-16 - 05:36 PatrickZywicki  
PDFpdf Most_Sensitive_Analysis.pdf r1 manage 13.9 K 2014-06-17 - 04:39 PatrickZywicki  
PNGpng Most_Sensitive_Analysis.png r1 manage 14.2 K 2014-06-17 - 04:39 PatrickZywicki  
PDFpdf Most_Sensitive_NNLO.pdf r5 r4 r3 r2 r1 manage 14.9 K 2014-09-12 - 11:11 DominickOlivito  
PNGpng Most_Sensitive_NNLO.png r5 r4 r3 r2 r1 manage 13.5 K 2014-09-12 - 11:11 DominickOlivito  
PDFpdf MuHiggsMETBlinded.pdf r3 r2 r1 manage 16.8 K 2014-08-15 - 18:50 DominickOlivito  
PNGpng MuHiggsMETBlinded.png r3 r2 r1 manage 43.1 K 2014-08-15 - 18:51 DominickOlivito  
PDFpdf Observed_Sliding_Overlay.pdf r2 r1 manage 23.5 K 2014-06-17 - 03:34 PatrickZywicki  
PNGpng Observed_Sliding_Overlay.png r2 r1 manage 37.1 K 2014-06-17 - 03:34 PatrickZywicki  
PDFpdf Overlay_hZ_50K_NNLO_unphysical.pdf r1 manage 20.8 K 2014-06-11 - 23:31 DominickOlivito  
PNGpng Overlay_hZ_50K_NNLO_unphysical.png r1 manage 37.7 K 2014-06-11 - 23:31 DominickOlivito  
PDFpdf SigComp1_PtGGPtBB_2JbLL_gbar2Mbb01lep.pdf r4 r3 r2 r1 manage 16.2 K 2014-09-12 - 10:59 DominickOlivito  
PNGpng SigComp1_PtGGPtBB_2JbLL_gbar2Mbb01lep.png r4 r3 r2 r1 manage 37.8 K 2014-09-12 - 10:59 DominickOlivito  
PDFpdf SigComp1_PtGGPtBB_2JbMMgbar2Mbb0lep.pdf r6 r5 r4 r3 r2 manage 16.0 K 2014-09-12 - 11:00 DominickOlivito  
PNGpng SigComp1_PtGGPtBB_2JbMMgbar2Mbb0lep.png r6 r5 r4 r3 r2 manage 36.0 K 2014-09-12 - 11:00 DominickOlivito  
PDFpdf SigCompFulllog_MET_2JewkMjjgbar2lep0notH.pdf r3 r2 r1 manage 18.2 K 2014-09-12 - 11:00 DominickOlivito  
PNGpng SigCompFulllog_MET_2JewkMjjgbar2lep0notH.png r3 r2 r1 manage 36.3 K 2014-09-12 - 11:00 DominickOlivito  
PDFpdf SigCompFulllog_MET_2JewkMjjgbar2lep0notH_smh.pdf r1 manage 18.2 K 2014-07-03 - 01:12 AnthonyBarker  
PNGpng SigCompFulllog_MET_2JewkMjjgbar2lep0notH_smh.png r1 manage 27.9 K 2014-07-03 - 01:12 AnthonyBarker  
PDFpdf TChiHH.pdf r1 manage 10.2 K 2014-06-10 - 17:26 DominickOlivito  
PNGpng TChiHH.png r1 manage 5.7 K 2014-06-10 - 17:47 DominickOlivito  
PDFpdf TChiHZ.pdf r1 manage 10.4 K 2014-06-10 - 17:26 DominickOlivito  
PNGpng TChiHZ.png r1 manage 5.8 K 2014-06-10 - 17:47 DominickOlivito  
PDFpdf TChiWH.pdf r1 manage 11.2 K 2014-06-10 - 17:26 DominickOlivito  
PNGpng TChiWH.png r1 manage 5.7 K 2014-06-10 - 17:47 DominickOlivito  
Unknown file formatroot ZH_Efficiency.root r1 manage 4.5 K 2014-06-16 - 21:11 CharlesWelke Efficiency map for Z(ll)H(bb) analysis
PDFpdf ZZ_overlay.pdf r3 r2 r1 manage 17.6 K 2014-09-12 - 11:07 DominickOlivito  
PNGpng ZZ_overlay.png r3 r2 r1 manage 35.9 K 2014-09-12 - 11:07 DominickOlivito  
PDFpdf abcd-2d-fig-illustration.pdf r1 manage 13.6 K 2014-07-01 - 22:46 DominickOlivito  
PNGpng abcd-2d-fig-illustration.png r2 r1 manage 14.2 K 2014-07-01 - 22:46 DominickOlivito  
PDFpdf abcd-2d-fig-sig4b.pdf r1 manage 15.5 K 2014-06-11 - 22:32 DominickOlivito  
PNGpng abcd-2d-fig-sig4b.png r1 manage 17.4 K 2014-06-11 - 22:32 DominickOlivito  
PDFpdf abcd-2d-fig-tt2b.pdf r1 manage 18.8 K 2014-06-11 - 22:32 DominickOlivito  
PNGpng abcd-2d-fig-tt2b.png r1 manage 18.4 K 2014-06-11 - 22:32 DominickOlivito  
PDFpdf abcd-2d-fig-tt4b.pdf r1 manage 16.1 K 2014-06-11 - 22:32 DominickOlivito  
PNGpng abcd-2d-fig-tt4b.png r1 manage 17.5 K 2014-06-11 - 22:32 DominickOlivito  
PDFpdf abcd_metsig_plot_3bsig-susy250-and-400-pl-scan-bg.pdf r3 r2 r1 manage 15.0 K 2014-09-12 - 10:53 DominickOlivito  
PNGpng abcd_metsig_plot_3bsig-susy250-and-400-pl-scan-bg.png r3 r2 r1 manage 29.9 K 2014-09-12 - 10:53 DominickOlivito  
PDFpdf abcd_metsig_plot_4bsig-susy250-and-400-pl-scan-bg.pdf r3 r2 r1 manage 15.0 K 2014-09-12 - 10:54 DominickOlivito  
PNGpng abcd_metsig_plot_4bsig-susy250-and-400-pl-scan-bg.png r3 r2 r1 manage 31.8 K 2014-09-12 - 10:54 DominickOlivito  
PDFpdf c_mgg_2JbMM_gbar2Mbb0lep_ygstyle.pdf r3 r2 r1 manage 18.2 K 2014-09-12 - 10:58 DominickOlivito  
PNGpng c_mgg_2JbMM_gbar2Mbb0lep_ygstyle.png r3 r2 r1 manage 18.0 K 2014-09-12 - 10:59 DominickOlivito  
PDFpdf c_mgg_2JewkMjjgbar2lep0notH_ygstyle.pdf r4 r3 r2 r1 manage 21.7 K 2014-09-12 - 10:58 DominickOlivito  
PNGpng c_mgg_2JewkMjjgbar2lep0notH_ygstyle.png r4 r3 r2 r1 manage 25.0 K 2014-09-12 - 10:58 DominickOlivito  
PDFpdf compare_templates_2btag_mjjlo_mt2jhi_inclusive_medium.pdf r1 manage 19.1 K 2014-06-16 - 21:08 CharlesWelke K-Factor and MET templates.
PNGpng compare_templates_2btag_mjjlo_mt2jhi_inclusive_medium.png r1 manage 113.2 K 2014-06-16 - 21:43 CharlesWelke png versions
PDFpdf exclusion-plot-2d-expected-nm1.pdf r3 r2 r1 manage 15.7 K 2014-09-12 - 11:07 DominickOlivito  
PNGpng exclusion-plot-2d-expected-nm1.png r3 r2 r1 manage 33.3 K 2014-09-12 - 11:08 DominickOlivito  
PDFpdf exclusion-plot-2d-observed-nm1.pdf r3 r2 r1 manage 24.1 K 2014-09-12 - 11:08 DominickOlivito  
PNGpng exclusion-plot-2d-observed-nm1.png r3 r2 r1 manage 32.9 K 2014-09-12 - 11:08 DominickOlivito  
PDFpdf exclusion-plot-2d.pdf r3 r2 r1 manage 22.9 K 2014-09-12 - 11:07 DominickOlivito  
PNGpng exclusion-plot-2d.png r3 r2 r1 manage 20.1 K 2014-09-12 - 11:07 DominickOlivito  
PDFpdf exclusion_Wino2D_AB-DMe-DMm-DOW-JG-RG_overlay_observed.pdf r3 r2 r1 manage 22.1 K 2014-09-12 - 11:09 DominickOlivito  
PNGpng exclusion_Wino2D_AB-DMe-DMm-DOW-JG-RG_overlay_observed.png r4 r3 r2 r1 manage 40.1 K 2014-09-12 - 11:09 DominickOlivito  
PDFpdf exclusion_Wino_AB.pdf r3 r2 r1 manage 16.4 K 2014-09-12 - 11:09 DominickOlivito  
PNGpng exclusion_Wino_AB.png r3 r2 r1 manage 31.9 K 2014-09-12 - 11:10 DominickOlivito  
PDFpdf exclusion_Wino_AB_DMe-DMm-DOW-JG-RG.pdf r3 r2 r1 manage 16.2 K 2014-09-12 - 11:09 DominickOlivito  
PNGpng exclusion_Wino_AB_DMe-DMm-DOW-JG-RG.png r4 r3 r2 r1 manage 31.7 K 2014-09-12 - 11:09 DominickOlivito  
PDFpdf exclusion_Wino_DMe.pdf r3 r2 r1 manage 16.5 K 2014-09-12 - 11:09 DominickOlivito  
PNGpng exclusion_Wino_DMe.png r3 r2 r1 manage 31.6 K 2014-09-12 - 11:10 DominickOlivito  
PDFpdf exclusion_Wino_DMm.pdf r3 r2 r1 manage 16.3 K 2014-09-12 - 11:10 DominickOlivito  
PNGpng exclusion_Wino_DMm.png r3 r2 r1 manage 29.1 K 2014-09-12 - 11:10 DominickOlivito  
Unknown file formatroot exclusions_2a2b_1.0_3sigma_50K_NNLO.root r1 manage 9.3 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_HH_Ele_3sigma_50K_NNLO_updated.root r1 manage 9.5 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_HH_Mu_3sigma_50K_NNLO_updated.root r1 manage 9.4 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_HZ_Ele_3sigma_50K_NNLO_updated.root r1 manage 9.6 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_HZ_Mu_3sigma_50K_NNLO_updated.root r1 manage 9.5 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_hZ_0.5_Ele_3sigma_50K_NNLO.root r1 manage 9.2 K 2014-06-28 - 00:19 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_hZ_0.5_Mu_3sigma_50K_NNLO.root r1 manage 9.1 K 2014-06-28 - 00:19 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_hh_Ele_3sigma_50K_NNLO.root r1 manage 9.0 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_2a2l_hh_Mu_3sigma_50K_NNLO.root r1 manage 9.0 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_2b2l_0.5_3sigma_50K_NNLO.root r2 r1 manage 9.3 K 2014-06-29 - 21:35 PatrickZywicki  
Unknown file formatroot exclusions_2l2j_0.0_3sigma_50K_NNLO.root r1 manage 9.2 K 2014-06-28 - 00:38 PatrickZywicki  
Unknown file formatroot exclusions_4b_1.0_3sigma_50K_NNLO.root r1 manage 8.9 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_ALL_0.5_3sigma_50K_NNLO_unphysical.root r1 manage 9.7 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_ALL_1.0_3sigma_50K_NNLO.root r1 manage 9.4 K 2014-06-28 - 00:15 PatrickZywicki  
Unknown file formatroot exclusions_ALL_1.0_BEG_50K_NNLO_updated.root r1 manage 9.7 K 2014-09-14 - 22:30 PatrickZywicki  
Unknown file formatroot exclusions_ALL_3sigma_50K_NNLO.root r1 manage 19.4 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi2b2l2a2l_0.5_3sigma_50K_NNLO.root r1 manage 9.9 K 2014-06-28 - 00:19 PatrickZywicki  
Unknown file formatroot exclusions_multi2b2l_0.5_50K_NNLO.root r1 manage 7.9 K 2014-06-28 - 00:19 PatrickZywicki  
Unknown file formatroot exclusions_multi2l2j_3sigma_50K_NNLO.root r1 manage 9.0 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi4b2a2b_1.0_2sigma_50K_NNLO.root r1 manage 9.7 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_multi4b2b2l2a2b2l2j_3sigma_50K_NNLO.root r1 manage 20.3 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi4b2b2l2a2b_3sigma_50K_NNLO.root r1 manage 20.2 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi4b2b2l_3sigma_50K_NNLO.root r1 manage 20.0 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi4b_1.0_2sigma_50K_NNLO.root r1 manage 9.4 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_multi4b_3sigma_50K_NNLO.root r1 manage 19.7 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi_ALL_0.0_3sigma_50K_NNLO.root r1 manage 8.8 K 2014-06-28 - 00:19 PatrickZywicki  
Unknown file formatroot exclusions_multi_ALL_1.0_2sigma_50K_NNLO.root r1 manage 9.4 K 2014-06-28 - 00:04 PatrickZywicki  
Unknown file formatroot exclusions_multi_ALL_3sigma_50K_NNLO.root r1 manage 19.5 K 2014-06-28 - 00:37 PatrickZywicki  
Unknown file formatroot exclusions_multi_HZ_0.5_unphysical_3sigma_50K_NNLO.root r1 manage 9.6 K 2014-06-28 - 00:19 PatrickZywicki  
PDFpdf ggEleMET.pdf r1 manage 16.7 K 2014-06-16 - 16:28 DavidMorse gg+Electron missing transverse energy
PNGpng ggEleMET.png r1 manage 31.7 K 2014-06-16 - 16:27 DavidMorse gg+Electron missing transverse energy
PDFpdf ggEleMT.pdf r1 manage 16.1 K 2014-06-10 - 19:52 DavidMorse gg+Electron Transverse Mass
PNGpng ggEleMT.png r1 manage 31.6 K 2014-06-10 - 19:57 DavidMorse gg+Electron Transverse Mass
PDFpdf ggEleMgg.pdf r1 manage 18.1 K 2014-06-10 - 19:51 DavidMorse gg+Electron di-photon invariant mass
PNGpng ggEleMgg.png r1 manage 24.4 K 2014-06-10 - 19:56 DavidMorse gg+Electron di-photon invariant mass
Compressed Zip archivetgz ggLeptonEfficiencyFiles.tgz r2 r1 manage 289.8 K 2014-09-12 - 20:59 DavidMorse gg+lepton efficiency files
PDFpdf ggMet_InvarMassCuts_BERNfit.pdf r3 r2 r1 manage 19.0 K 2014-06-19 - 11:38 DavidMorse MET comparison for background and data for inclusive diphoton selection
PNGpng ggMet_InvarMassCuts_BERNfit.png r3 r2 r1 manage 28.6 K 2014-06-19 - 11:38 DavidMorse MET comparison for background and data for inclusive diphoton selection
PDFpdf ggMuMET.pdf r1 manage 16.7 K 2014-06-16 - 16:28 DavidMorse gg+Muon missing transverse energy
PNGpng ggMuMET.png r1 manage 34.4 K 2014-06-16 - 16:28 DavidMorse gg+Muon missing transverse energy
PDFpdf ggMuMT.pdf r1 manage 16.4 K 2014-06-10 - 19:53 DavidMorse gg+Muon Transverse Mass
PNGpng ggMuMT.png r1 manage 33.9 K 2014-06-10 - 19:57 DavidMorse gg+Muon Transverse Mass
PDFpdf ggMuMgg.pdf r1 manage 17.9 K 2014-06-10 - 19:51 DavidMorse gg+Muon di-photon invariant mass
PNGpng ggMuMgg.png r1 manage 23.3 K 2014-06-10 - 19:57 DavidMorse gg+Muon di-photon invariant mass
PDFpdf hZ_overlay.pdf r3 r2 r1 manage 18.6 K 2014-09-12 - 11:06 DominickOlivito  
PNGpng hZ_overlay.png r3 r2 r1 manage 41.6 K 2014-09-12 - 11:06 DominickOlivito  
PDFpdf hZ_overlay_unphysical.pdf r3 r2 r1 manage 18.2 K 2014-09-12 - 11:06 DominickOlivito  
PNGpng hZ_overlay_unphysical.png r3 r2 r1 manage 37.2 K 2014-09-12 - 11:06 DominickOlivito  
PDFpdf hh_overlay.pdf r3 r2 r1 manage 18.2 K 2014-09-12 - 11:06 DominickOlivito  
PNGpng hh_overlay.png r3 r2 r1 manage 41.0 K 2014-09-12 - 11:06 DominickOlivito  
PDFpdf hh_v2.pdf r1 manage 17.5 K 2014-06-27 - 23:15 PatrickZywicki  
PNGpng hh_v2.png r1 manage 113.9 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf hh_v3.pdf r1 manage 17.6 K 2014-08-15 - 18:54 PatrickZywicki  
PNGpng hh_v3.png r1 manage 37.0 K 2014-08-15 - 18:54 PatrickZywicki  
PDFpdf hh_v4.pdf r1 manage 17.5 K 2014-09-14 - 22:23 PatrickZywicki  
PNGpng hh_v4.png r1 manage 37.0 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf higgs_Nm1_higgsmass-drawStack.pdf r3 r2 r1 manage 16.9 K 2014-09-12 - 10:52 DominickOlivito  
PNGpng higgs_Nm1_higgsmass-drawStack.png r3 r2 r1 manage 37.3 K 2014-09-12 - 10:52 DominickOlivito  
PDFpdf higgs_Nm1_higgsmassdiff-drawStack.pdf r3 r2 r1 manage 16.0 K 2014-09-12 - 10:49 DominickOlivito  
PNGpng higgs_Nm1_higgsmassdiff-drawStack.png r3 r2 r1 manage 34.4 K 2014-09-12 - 10:50 DominickOlivito  
PDFpdf higgs_Nm1_maxDR-drawStack.pdf r3 r2 r1 manage 16.6 K 2014-09-12 - 10:51 DominickOlivito  
PNGpng higgs_Nm1_maxDR-drawStack.png r3 r2 r1 manage 31.9 K 2014-09-12 - 10:51 DominickOlivito  
Unknown file formatroot limit_obsexp.root r1 manage 5.0 K 2014-06-18 - 19:48 PeterThomassen  
PDFpdf mbb_sig_ll_comparison_plot.pdf r2 r1 manage 38.6 K 2014-06-17 - 22:47 CharlesWelke N-1 plots for mbb and mt2j using MC for BG predictions
PNGpng mbb_sig_ll_comparison_plot.png r2 r1 manage 141.7 K 2014-06-17 - 22:46 CharlesWelke png version
PDFpdf met-vs-fakemet-2b-control-withsusy.pdf r1 manage 15.6 K 2014-09-12 - 11:24 DominickOlivito  
PNGpng met-vs-fakemet-2b-control-withsusy.png r1 manage 41.0 K 2014-09-12 - 11:24 DominickOlivito  
PDFpdf met_metall_2btag_mjjhi_mt2jhi_inclusive_medium.pdf r3 r2 r1 manage 17.8 K 2014-06-17 - 22:52 CharlesWelke MET Distribution in high mbb CR
PNGpng met_metall_2btag_mjjhi_mt2jhi_inclusive_medium.png r2 r1 manage 148.0 K 2014-06-17 - 22:52 CharlesWelke png version
PDFpdf met_metall_2btag_mjjlo_mt2jhi_inclusive_medium_signal.pdf r4 r3 r2 r1 manage 16.6 K 2014-09-12 - 11:04 DominickOlivito  
PNGpng met_metall_2btag_mjjlo_mt2jhi_inclusive_medium_signal.png r4 r3 r2 r1 manage 21.9 K 2014-09-12 - 11:04 DominickOlivito  
PDFpdf met_metall_2btag_mjjlo_mt2jlo_inclusive_medium.pdf r4 r3 r2 r1 manage 18.1 K 2014-09-12 - 11:04 DominickOlivito  
PNGpng met_metall_2btag_mjjlo_mt2jlo_inclusive_medium.png r4 r3 r2 r1 manage 37.5 K 2014-09-12 - 11:05 DominickOlivito  
PDFpdf met_metall_bveto_mjjlo_mt2jhi_inclusive_medium.pdf r4 r3 r2 r1 manage 18.1 K 2014-09-12 - 11:05 DominickOlivito  
PNGpng met_metall_bveto_mjjlo_mt2jhi_inclusive_medium.png r4 r3 r2 r1 manage 39.4 K 2014-09-12 - 11:05 DominickOlivito  
PDFpdf mt2b_sig_ll_comparison_plot.pdf r3 r2 r1 manage 81.6 K 2014-09-12 - 11:34 DominickOlivito N-1 plots for mbb and mt2j using MC for BG predictions
PNGpng mt2b_sig_ll_comparison_plot.png r3 r2 r1 manage 35.6 K 2014-09-12 - 11:34 DominickOlivito png version
PDFpdf multi-4b-2a2b-2a2l-HH.pdf r1 manage 20.2 K 2014-06-11 - 23:27 DominickOlivito  
PNGpng multi-4b-2a2b-2a2l-HH.png r1 manage 33.6 K 2014-06-11 - 23:27 DominickOlivito  
PDFpdf multi2b2l2a2l_unphysical_0.5.pdf r1 manage 16.9 K 2014-06-17 - 04:20 PatrickZywicki  
PNGpng multi2b2l2a2l_unphysical_0.5.png r1 manage 31.0 K 2014-06-17 - 04:20 PatrickZywicki  
PDFpdf multi2b2l2a2l_unphysical_0.5_v2.pdf r1 manage 17.7 K 2014-06-29 - 20:45 PatrickZywicki  
PNGpng multi2b2l2a2l_unphysical_0.5_v2.png r1 manage 114.2 K 2014-06-27 - 23:39 PatrickZywicki  
PDFpdf multi2b2l2a2l_unphysical_0.5_v3.pdf r1 manage 17.6 K 2014-09-14 - 22:23 PatrickZywicki  
PNGpng multi2b2l2a2l_unphysical_0.5_v3.png r1 manage 38.0 K 2014-09-14 - 22:23 PatrickZywicki  
PDFpdf multi2b2l_unphysical_0.5.pdf r1 manage 16.9 K 2014-06-13 - 07:01 PatrickZywicki  
PNGpng multi2b2l_unphysical_0.5.png r1 manage 22.7 K 2014-06-13 - 07:01 PatrickZywicki  
PDFpdf multi2b2l_unphysical_0.5_v2.pdf r1 manage 17.7 K 2014-06-27 - 23:37 PatrickZywicki  
PNGpng multi2b2l_unphysical_0.5_v2.png r1 manage 120.7 K 2014-06-27 - 23:37 PatrickZywicki  
PDFpdf multi2l2j_0.0.pdf r1 manage 16.9 K 2014-06-17 - 04:29 PatrickZywicki  
PNGpng multi2l2j_0.0.png r1 manage 30.9 K 2014-06-17 - 04:29 PatrickZywicki  
PDFpdf multi2l2j_0.0_v2.pdf r1 manage 17.4 K 2014-06-27 - 23:52 PatrickZywicki  
PNGpng multi2l2j_0.0_v2.png r1 manage 110.2 K 2014-06-27 - 23:52 PatrickZywicki  
PDFpdf multi4b2a2b_1.0.pdf r1 manage 17.2 K 2014-06-13 - 06:59 PatrickZywicki  
PNGpng multi4b2a2b_1.0.png r1 manage 37.0 K 2014-06-13 - 06:59 PatrickZywicki  
PDFpdf multi4b2a2b_1.0_v2.pdf r1 manage 17.8 K 2014-06-29 - 20:45 PatrickZywicki  
PNGpng multi4b2a2b_1.0_v2.png r1 manage 122.1 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf multi4b2b2l2a2b2l2j_2d.pdf r1 manage 18.8 K 2014-06-13 - 07:04 PatrickZywicki  
PNGpng multi4b2b2l2a2b2l2j_2d.png r1 manage 34.3 K 2014-06-13 - 07:04 PatrickZywicki  
PDFpdf multi4b2b2l2a2b2l2j_2d_v2.pdf r1 manage 23.3 K 2014-06-27 - 23:54 PatrickZywicki  
PNGpng multi4b2b2l2a2b2l2j_2d_v2.png r1 manage 104.6 K 2014-06-27 - 23:58 PatrickZywicki  
PDFpdf multi4b2b2l2a2b_2d.pdf r1 manage 17.8 K 2014-06-13 - 07:04 PatrickZywicki  
PNGpng multi4b2b2l2a2b_2d.png r1 manage 33.3 K 2014-06-13 - 07:04 PatrickZywicki  
PDFpdf multi4b2b2l2a2b_2d_v2.pdf r1 manage 21.5 K 2014-06-27 - 23:54 PatrickZywicki  
PNGpng multi4b2b2l2a2b_2d_v2.png r1 manage 101.0 K 2014-06-27 - 23:54 PatrickZywicki  
PDFpdf multi4b2b2l_2d.pdf r1 manage 17.8 K 2014-06-13 - 07:04 PatrickZywicki  
PNGpng multi4b2b2l_2d.png r1 manage 32.8 K 2014-06-13 - 07:04 PatrickZywicki  
PDFpdf multi4b2b2l_2d_v2.pdf r1 manage 21.3 K 2014-06-29 - 20:45 PatrickZywicki  
PNGpng multi4b2b2l_2d_v2.png r1 manage 98.9 K 2014-06-27 - 23:58 PatrickZywicki  
PDFpdf multi4b_1.0.pdf r1 manage 17.1 K 2014-06-13 - 06:59 PatrickZywicki  
PNGpng multi4b_1.0.png r1 manage 35.7 K 2014-06-13 - 06:59 PatrickZywicki  
PDFpdf multi4b_1.0_v2.pdf r1 manage 17.7 K 2014-06-27 - 23:15 PatrickZywicki  
PNGpng multi4b_1.0_v2.png r1 manage 122.3 K 2014-06-27 - 23:15 PatrickZywicki  
PDFpdf multi4b_2d.pdf r1 manage 17.5 K 2014-06-13 - 07:03 PatrickZywicki  
PNGpng multi4b_2d.png r1 manage 32.1 K 2014-06-13 - 07:03 PatrickZywicki  
PDFpdf multi4b_2d_v2.pdf r1 manage 22.3 K 2014-06-27 - 23:52 PatrickZywicki  
PNGpng multi4b_2d_v2.png r1 manage 96.9 K 2014-06-27 - 23:52 PatrickZywicki  
PDFpdf multi_ALL_0.0.pdf r1 manage 16.9 K 2014-06-13 - 07:03 PatrickZywicki  
PNGpng multi_ALL_0.0.png r1 manage 21.7 K 2014-06-13 - 07:03 PatrickZywicki  
PDFpdf multi_ALL_0.0_v2.pdf r1 manage 17.4 K 2014-06-27 - 23:52 PatrickZywicki  
PNGpng multi_ALL_0.0_v2.png r1 manage 106.2 K 2014-06-27 - 23:52 PatrickZywicki  
PDFpdf multi_ALL_1.0.pdf r1 manage 17.1 K 2014-06-13 - 04:42 PatrickZywicki  
PNGpng multi_ALL_1.0.png r1 manage 33.8 K 2014-06-13 - 04:42 PatrickZywicki  
PDFpdf multi_ALL_1.0_v3.pdf r1 manage 17.7 K 2014-06-27 - 22:38 PatrickZywicki  
PNGpng multi_ALL_1.0_v3.png r1 manage 45.0 K 2014-06-27 - 22:36 PatrickZywicki  
PDFpdf multi_ALL_2d.pdf r1 manage 17.4 K 2014-06-13 - 07:03 PatrickZywicki  
PNGpng multi_ALL_2d.png r1 manage 32.7 K 2014-06-13 - 07:03 PatrickZywicki  
PDFpdf multi_ALL_2d_v2.pdf r1 manage 21.1 K 2014-06-27 - 23:52 PatrickZywicki  
PNGpng multi_ALL_2d_v2.png r1 manage 93.5 K 2014-06-27 - 23:52 PatrickZywicki  
PDFpdf multi_unphysical_0.5.pdf r1 manage 16.9 K 2014-06-13 - 07:01 PatrickZywicki  
PNGpng multi_unphysical_0.5.png r1 manage 31.6 K 2014-06-13 - 07:01 PatrickZywicki  
PDFpdf multi_unphysical_0.5_v2.pdf r1 manage 17.7 K 2014-06-27 - 23:37 PatrickZywicki  
PNGpng multi_unphysical_0.5_v2.png r1 manage 118.8 K 2014-06-27 - 23:37 PatrickZywicki  
PDFpdf r_sigsb_mc_2b3b4b_hybrid_stat_errs_only.pdf r2 r1 manage 14.1 K 2014-06-18 - 11:26 JoshuaThompson  
PNGpng r_sigsb_mc_2b3b4b_hybrid_stat_errs_only.png r2 r1 manage 11.6 K 2014-06-18 - 11:27 JoshuaThompson  
PDFpdf r_sigsb_mc_2b3b4b_hybrid_stat_errs_only_with_data.pdf r1 manage 14.3 K 2014-06-11 - 22:48 DominickOlivito  
PNGpng r_sigsb_mc_2b3b4b_hybrid_stat_errs_only_with_data.png r1 manage 13.7 K 2014-06-11 - 22:48 DominickOlivito  
PDFpdf r_sigsb_mc_2b3b4b_hybrid_stat_errs_only_with_data_and_fit.pdf r3 r2 r1 manage 15.3 K 2014-09-12 - 10:53 DominickOlivito  
PNGpng r_sigsb_mc_2b3b4b_hybrid_stat_errs_only_with_data_and_fit.png r3 r2 r1 manage 31.1 K 2014-09-12 - 10:53 DominickOlivito  
Texttxt sig-eff-3b.txt r2 r1 manage 0.8 K 2014-06-17 - 10:43 JoshuaThompson Signal efficiencies in text format for bbbb analysis
Texttxt sig-eff-4b.txt r2 r1 manage 0.8 K 2014-06-17 - 10:43 JoshuaThompson Signal efficiencies in text format for bbbb analysis
PDFpdf stauNLSP_150_50_Top10.pdf r1 manage 24.3 K 2014-06-16 - 05:51 PatrickZywicki  
PNGpng stauNLSP_150_50_Top10.png r1 manage 47.3 K 2014-06-16 - 05:36 PatrickZywicki  
PNGpng table1.png r1 manage 50.6 K 2014-06-12 - 20:30 OwenLong  
PNGpng table10.png r1 manage 88.3 K 2014-06-12 - 21:04 OwenLong  
PNGpng table11.png r3 r2 r1 manage 72.4 K 2014-09-12 - 11:37 DominickOlivito  
PNGpng table12.png r1 manage 147.9 K 2014-06-12 - 21:06 OwenLong  
PNGpng table2.png r2 r1 manage 39.2 K 2014-09-12 - 11:39 DominickOlivito  
PNGpng table3.png r1 manage 47.0 K 2014-06-12 - 20:46 OwenLong  
PNGpng table4.png r2 r1 manage 40.4 K 2014-09-12 - 11:37 DominickOlivito  
PNGpng table5.png r1 manage 113.3 K 2014-06-12 - 20:58 OwenLong  
PNGpng table6.png r2 r1 manage 54.2 K 2014-06-22 - 11:30 DominickOlivito  
PNGpng table7.png r1 manage 54.8 K 2014-06-12 - 21:03 OwenLong  
PNGpng table8.png r1 manage 154.1 K 2014-06-12 - 21:03 OwenLong  
PNGpng table9.png r1 manage 158.1 K 2014-06-12 - 21:04 OwenLong  
Edit | Attach | Watch | Print version | History: r56 < r55 < r54 < r53 < r52 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r56 - 2014-10-24 - DominickOlivito
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CMSPublic All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback