CMS Tracking POG Performance Plots For 2017 with PhaseI pixel detector

Track Reconstruction Performance

The reconstructed tracks are selected with the "high purity" flag (see arXiv:1405.6569).
The samples used are ttbar events simulated at sqrt(s)=13 TeV with different pile-up conditions (=0, 35, 50, 70; bunch crossing=25ns).
The releases used are either the one used during Run2 or the current development candidate for 2017 data-taking.
The matching of reconstructed track with simulated ones requires that >75% of the reconstructed track hits come from the simulated track.

General description

The PU scenarios considered are 0, 35, 50, 70.

The plots that follow come always in three:

  1. Track reconstruction efficiency vs eta
  2. Fake and Duplicate rate vs eta
  3. Track reconstruction efficiency vs track production radius

The definition of efficiency, fake rate and duplicate rate follow.

simulated track
track of a simulated particle in the Geant4 detector simulation ("MC truth")

reconstucted track
result of the track reconstruction run on the simulated data

efficiency
it is defined as the number of matched reconstructed tracks divided by number of simulated tracks. The association between reconstructed and simulated tracks has been introduced and explained in the previous paragraph

fake rate
it is defined as the number of non-matched reconstructed tracks divided by number of reconstructed tracks.

duplicate rate
it is defined as the number of reconstructed tracks associated to the very same simulated track divided by number of reconstructed tracks.

2017 tracking

Plot Description

pdf png
Track reconstruction efficiency per tracking iteration as a function of simulated track pT for the Phase I tracker.

pdf png
Track reconstruction efficiency per tracking iteration as a function of simulated track production vertex radius for the Phase I tracker.

Tracking performance at different PU condition

Plot Description

pdf png
Track reconstruction efficiency as a function of simulated track for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of reconstructed track for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction efficiency as a function of simulated track pT for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of reconstructed track pT for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction efficiency as a function of simulated track production vertex radius for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of radius of the point of closest approach to beam line (PCA) of reconstructed track for the Phase I tracker at different pileup conditions.

Vertex Reconstruction Performance

Reconstructed vertices are selected requiring: ndof>4, |z|< 24 cm, R<2 cm.
Samples used are ttbar simulated at sqrt(s)=13 TeV, 25ns bunch crossing and different average pile-up conditions (=0, 35, 50 and 70).
Release used is the current development candidate for Run2 data-taking.

Plot Description


pdf png
Number of reconstructed vertices vs number of simulated interactions.

Comparison against 2016 performances

Tracking performance

Plot Description

pdf png
Track reconstruction efficiency as a function of simulated track η for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track reconstruction fake rate as a function of reconstructed track η for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track reconstruction efficiency as a function of simulated track pT for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 over all the pT spectrum.

pdf png
Track reconstruction fake rate as a function of reconstructed track pT for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 over all the pT spectrum.

pdf png
Track reconstruction efficiency as a function of simulated track production vertex radius for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 especially at small radii, where the new pixel detector plays a vital role at seeding and pattern recognition level.

pdf png
Track reconstruction fake rate as a function of radius of the point of closest approach to beam line (PCA) of reconstructed track for 2016 and 2017 detectors. The 2017 detector shows better performance than 2016 especially at small radii, where the new pixel detector plays a vital role at seeding and pattern recognition level.

Expected resolutions on track parameters

Plot Description

pdf png
Track d0 (transverse impact point) resolution as a function of the simulated track η for 2016 and 2017 detectors The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track dz (longitudinal impact point) resolution as a function of the simulated track η for 2016 and 2017 detectors The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track pT resolution as a function of the simulated track pT for 2016 and 2017 detectors. The performances between 2016 and 2017 are comparable.

pdf png
Track pT resolution as a function of the simulated track η for 2016 and 2017 detectors. The performances between 2016 and 2017 are comparable. The pT resolution improves in η 1.2-1.6, because the 4th pixel layer yields better precision on the track extrapolation to the strip tracker in the pixel barrel-forward transition region.

General Vertex Reconstruction Performance

Reconstructed vertices are selected requiring: ndof>4, |z|< 24 cm, R<2 cm.
Samples used are ttbar simulated at sqrt(s)=13 TeV, 25ns bunch crossing and average pile-up of 35.
Release used is the current development candidate for 2017 data-taking.
Matching with simulated vertices requiring: |deltaZ|<1 mm AND |deltaZ|<3sigmaZ (where sigmaZ is the reconstructed vertex Z uncertainty).

Plot Description

pdf png
Number of reconstructed vertices vs number of simulated interactions.

pdf png
Vertex merge rate as a function of the distance to closest other vertex in z (right). Vertex merge rate is defined as the number of reconstructed vertices matched to at least two simulated vertices divided by the number of all reconstructed vertices.

Vertex Resolutions

Plot Description

pdf png
Vertex transverse resolution as a function of the number of tracks used in the vertex fit. The 2017 detector shows better performance than 2016 detector.

pdf png
Vertex longitudinal resolution as a function of the number of tracks used in the vertex fit. The 2017 detector shows better performance than 2016 detector.

Comparison using CA seeding.

We already noticed in the previous sections that the increase in the combinatoric problem shows up mainly at seeding level, while, if seeds are of good-enough quality, the overall time spent in the patter recognition step does not suffer too much. For this reasons a huge effort has been spent during the past years to improve the seeding level algorithms. A novel approach based on Cellular Automaton(CA) techniques has been developed to created seeds. The algorithm has been developed in a GPU friendly way. The current plan is to switch the full tracking seeding to use the CA seeding code, that, as we will see, guarantees much better seeding time, while preserving if not improving the overall outcome in terms of good tracks reconstructed.

Generic Tracking Performances vs. standard seeding

Plot Description

pdf png
Track reconstruction efficiency as a function of simulated track eta for standard seeding and Cellular Automaton (CA) seeding.

pdf png
Track reconstruction fake rate as a function of reconstructed track eta for standard seeding and Cellular Automaton (CA) seeding.

2017 tracking with CA seeeding

Plot Description

pdf png
Track reconstruction efficiency per tracking iteration as a function of simulated track pT for the Phase I tracker.

pdf png
Track reconstruction efficiency per tracking iteration as a function of simulated track production vertex radius for the Phase I tracker.

Tracking performance at different PU condition

Plot Description

pdf png
Track reconstruction efficiency as a function of simulated track for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of reconstructed track for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction efficiency as a function of simulated track pT for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of reconstructed track pT for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction efficiency as a function of simulated track production vertex radius for the Phase I tracker at different pileup conditions.

pdf png
Track reconstruction fake rate as a function of radius of the point of closest approach to beam line (PCA) of reconstructed track for the Phase I tracker at different pileup conditions.

Comparison of tracking performance against 2016 performances

Plot Description

pdf png
Track reconstruction efficiency as a function of simulated track η for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding.. The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track reconstruction fake rate as a function of reconstructed track η for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding.. The 2017 detector shows better performance than 2016 over all the η spectrum.

pdf png
Track reconstruction efficiency as a function of simulated track pT for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding.. The 2017 detector shows better performance than 2016 over all the pT spectrum.

pdf png
Track reconstruction fake rate as a function of reconstructed track pT for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding.. The 2017 detector shows better performance than 2016 over all the pT spectrum.

pdf png
Track reconstruction efficiency as a function of simulated track production vertex radius for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding. The 2017 detector shows better performance than 2016 especially at small radii, where the new pixel detector plays a vital role at seeding and pattern recognition level.

pdf png
Track reconstruction fake rate as a function of radius of the point of closest approach to beam line (PCA) of reconstructed track for 2016 and 2017 detectors, latter with Cellular Automaton (CA) seeding.. The 2017 detector shows better performance than 2016 especially at small radii, where the new pixel detector plays a vital role at seeding and pattern recognition level.

Timing

Plot Description

pdf png
Time spent in seeding as a function of average pileup for 2016 tracking, 2017 tracking with conventional seeding, and 2017 tracking with Cellular Automaton (CA) seeding. All time measurements are normalized such that 1 = tracking time of 2016 no pileup. The timing of 2017 CA seeding is back at the level of 2016, a remarkable achievement given the increased number of layer combinations involved in the seeding phase with respect to the 2016 case. CA is expected to be faster than conventional seeding because of CA needing fewer and simpler calculations that are localized in memory.

pdf png
Time spent in pattern recognition as a function of average pileup for 2016 tracking, 2017 tracking with conventional seeding, and 2017 tracking with Cellular Automaton (CA) seeding. All time measurements are normalized such that 1 = tracking time of 2016 no pileup. In pattern recognition, CA seeding brings no additional gain, as expected.

pdf png
Time spent in the entire tracking sequence (right) as a function of average pileup for 2016 tracking, 2017 tracking with conventional seeding, and 2017 tracking with Cellular Automaton (CA) seeding. All time measurements are normalized such that 1 = tracking time of 2016 no pileup. The overall gain by the CA comes completely from the gain in the seeding stage. CA is expected to be faster than conventional seeding because of CA needing fewer and simpler calculations that are localized in memory.
Topic attachments
I Attachment History Action Size Date Who Comment
PDFpdf ttbar_phase0_phase1ca_vs_pu_buildtime_vs_pu.pdf r1 manage 14.1 K 2017-03-04 - 21:21 MattiKortelainen  
PNGpng ttbar_phase0_phase1ca_vs_pu_buildtime_vs_pu.png r1 manage 23.2 K 2017-03-04 - 21:21 MattiKortelainen  
PDFpdf ttbar_phase0_phase1ca_vs_pu_pixeltracks_vs_pu.pdf r1 manage 14.1 K 2017-03-04 - 21:21 MattiKortelainen  
PNGpng ttbar_phase0_phase1ca_vs_pu_pixeltracks_vs_pu.png r1 manage 23.2 K 2017-03-04 - 21:21 MattiKortelainen  
PDFpdf ttbar_phase0_phase1ca_vs_pu_seedtime_vs_pu.pdf r1 manage 14.1 K 2017-03-04 - 21:21 MattiKortelainen  
PNGpng ttbar_phase0_phase1ca_vs_pu_seedtime_vs_pu.png r1 manage 21.9 K 2017-03-04 - 21:21 MattiKortelainen  
PDFpdf ttbar_phase0_phase1ca_vs_pu_time_vs_pu.pdf r1 manage 14.1 K 2017-03-04 - 21:21 MattiKortelainen  
PNGpng ttbar_phase0_phase1ca_vs_pu_time_vs_pu.png r1 manage 23.5 K 2017-03-04 - 21:21 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_efficiency_eta.pdf r1 manage 21.6 K 2017-03-04 - 21:21 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_efficiency_eta.png r1 manage 30.2 K 2017-03-04 - 21:21 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_efficiency_pt.pdf r1 manage 21.6 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_efficiency_pt.png r1 manage 31.1 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_efficiency_r.pdf r1 manage 26.4 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_efficiency_r.png r1 manage 34.2 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_fakerate_eta.pdf r1 manage 21.6 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_fakerate_eta.png r1 manage 28.5 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_fakerate_pt.pdf r1 manage 21.4 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_fakerate_pt.png r1 manage 28.1 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_ca_vs_pu_fakerate_r.pdf r1 manage 22.1 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_ca_vs_pu_fakerate_r.png r1 manage 31.6 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_efficiency_eta.pdf r1 manage 21.6 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_efficiency_eta.png r1 manage 29.2 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_efficiency_pt.pdf r1 manage 21.5 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_efficiency_pt.png r1 manage 29.3 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_efficiency_r.pdf r1 manage 26.3 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_efficiency_r.png r1 manage 32.8 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_fakerate_eta.pdf r1 manage 21.8 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_fakerate_eta.png r1 manage 27.6 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_fakerate_pt.pdf r1 manage 21.4 K 2017-03-04 - 21:22 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_fakerate_pt.png r1 manage 26.6 K 2017-03-04 - 21:22 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_fakerate_r.pdf r1 manage 22.1 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_fakerate_r.png r1 manage 30.3 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_phase1_vs_pu_vertex_nvtx_vs_pu.pdf r1 manage 20.4 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_phase1_vs_pu_vertex_nvtx_vs_pu.png r1 manage 24.4 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_efficiency_eta.pdf r1 manage 16.5 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_efficiency_eta.png r1 manage 25.9 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_efficiency_pt.pdf r1 manage 17.0 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_efficiency_pt.png r1 manage 26.6 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_efficiency_r.pdf r1 manage 19.0 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_efficiency_r.png r1 manage 29.1 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_fakerate_eta.pdf r1 manage 16.5 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_fakerate_eta.png r1 manage 24.4 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_fakerate_pt.pdf r1 manage 16.8 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_fakerate_pt.png r1 manage 22.9 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_fakerate_r.pdf r1 manage 17.1 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_fakerate_r.png r1 manage 27.0 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_resolution_dxy_eta.pdf r1 manage 16.5 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_resolution_dxy_eta.png r1 manage 24.1 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_resolution_dz_eta.pdf r1 manage 17.0 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_resolution_dz_eta.png r1 manage 25.6 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_resolution_pt_eta.pdf r1 manage 16.0 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_resolution_pt_eta.png r1 manage 26.1 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_resolution_pt_pt.pdf r1 manage 16.4 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_resolution_pt_pt.png r1 manage 25.8 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_vertex_mergerate_closestz.pdf r1 manage 14.8 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_vertex_mergerate_closestz.png r1 manage 22.8 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_vertex_nvtx_vs_pu.pdf r1 manage 16.5 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_vertex_nvtx_vs_pu.png r1 manage 20.6 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_vertex_resolution_xy_ntrk.pdf r1 manage 15.6 K 2017-03-04 - 21:23 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_vertex_resolution_xy_ntrk.png r1 manage 24.5 K 2017-03-04 - 21:23 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1_vertex_resolution_z_ntrk.pdf r1 manage 15.5 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1_vertex_resolution_z_ntrk.png r1 manage 24.2 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_efficiency_eta.pdf r1 manage 15.8 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_efficiency_eta.png r1 manage 22.0 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_efficiency_pt.pdf r1 manage 16.8 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_efficiency_pt.png r1 manage 24.2 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_efficiency_r.pdf r1 manage 18.2 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_efficiency_r.png r1 manage 24.1 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_fakerate_eta.pdf r1 manage 15.9 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_fakerate_eta.png r1 manage 21.7 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_fakerate_pt.pdf r1 manage 16.5 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_fakerate_pt.png r1 manage 21.1 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase0_phase1ca_fakerate_r.pdf r1 manage 16.5 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase0_phase1ca_fakerate_r.png r1 manage 23.0 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1_ca_efficiency_eta.pdf r1 manage 17.2 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1_ca_efficiency_eta.png r1 manage 25.8 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1_ca_fakerate_eta.pdf r1 manage 17.1 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1_ca_fakerate_eta.png r1 manage 24.8 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1_efficiency_pt_cum.pdf r1 manage 18.5 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1_efficiency_pt_cum.png r1 manage 28.9 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1_efficiency_r_cum.pdf r1 manage 17.0 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1_efficiency_r_cum.png r1 manage 26.1 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1ca_efficiency_pt_cum.pdf r1 manage 18.6 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1ca_efficiency_pt_cum.png r1 manage 28.9 K 2017-03-04 - 21:24 MattiKortelainen  
PDFpdf ttbar_pu35_phase1ca_efficiency_r_cum.pdf r1 manage 16.9 K 2017-03-04 - 21:24 MattiKortelainen  
PNGpng ttbar_pu35_phase1ca_efficiency_r_cum.png r1 manage 26.2 K 2017-03-04 - 21:24 MattiKortelainen  
Edit | Attach | Watch | Print version | History: r6 < r5 < r4 < r3 < r2 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r6 - 2017-05-02 - MattiKortelainen
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    CMSPublic All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2022 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback