Brachytherapy Overview

Brachytherapy is a technique used to treat cancer tumors or plaque built-up within arterial walls. It uses tiny radioactive sources (the size of a grain of rice) that are inserted in the body through hollow plastic or stainless steel catheters into ro close to the disease target site. There is a variety of radioactive isotopes that are employed in brachytherapy that includes gamma and beta (electrons and positron) emitters, low and relatively high energies (up to about 5 MeV at most). It is one of the preferred choice in many cases (due to its localized nature) and can be used in conjonction with external beam treatments.

Because of the energy regime within which this technique is applicable, the underlying physics governing the various interactions in Brachytherapy applications are solely driven by the low energy physics processes.

This page will provide relevant information pertaining to the ability of the Geant4 Monte Carlo toolkit in simulating Brachytherapy applications. We recommend the brachytherapy example distributed within the Geant4 source code as a good starting point for users not familiar with this toolkit.

Brachytherapy References



  • 2010
    • Medical Physics Journal
      • Landry G, Reniers B, Murrer L, Lutgens L, Gurp EB, Pignol JP, Keller B, Beaulieu L, Verhaegen F.: Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition, Med Phys. 37 5188-98 (2010)
      • Ballester F, Granero D, Perez-Calatayud J, Venselaar JL, Rivard MJ.: Study of encapsulated 170Tm sources for their potential use in brachytherapy, Med Phys. 37 1629-37 (2010)
      • Rivard MJ, Granero D, Perez-Calatayud J, Ballester F.: Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air, Med Phys. 37 869-76 (2010)
      • Guimarães CC, Moralles M, Sene FF, Martinelli JR.: Dose-rate distribution of 32P-glass microspheres for intra-arterial brachytherapy, Med Phys. 37 532-9 (2010)
    • International Journal of Radiation Oncology and Biological Physics
      • 'Amours M, Pouliot J, Dagnault A, Verhaegen F, Beaulieu L.: Patient-Specific Monte Carlo-Based Dose-Kernel Approach for Inverse Planning in Afterloading Brachytherapy,Int. J. Radiat. Oncol. Biol. Phys., 2010 Nov 13 [in press]
    • Journal of Radiation Research
      • Hanada T, Yorozu A, Ohashi T, Shigematsu N, Maruyama K.: Evaluation of the dosimetric parameters for 125I brachytherapy determined in prostate medium using CT images, J. Radiat. Res. (Tokyo), 51(5) 553-61 2010
    • Brachytherapy
      • Hau EK, Oborn BM, Bucci J.: An unusual case of radioactive seed migration to the vertebral venous plexus and renal artery with nerve root compromise, Brachytherapy, 2010 Sep 14 [in press]
  • 2009
    • Medical Physics Journal
      • Meigooni AS, Wright C, Koona RA, Awan SB, Granero D, Perez-Calatayud J, Ballester F.: TG-43 U1 based dosimetric characterization of model 67-6520 Cs-137 brachytherapy source, Med Phys. 36 4711-9 (2009)
      • Ballester F, Granero D, Pérez-Calatayud J, Melhus CS, Rivard MJ: Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons, Med Phys. 36 4250-6 (2009)
      • Selvam TP, Sahoo S, Vishwakarma RS: EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models, Med Phys. 36 3870-9 (2009)
    • Biomed Microdevices
      • Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, and Yu TK: Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: a monte carlo simulation study, Biomed Microdevices 11 925-33 (2009)
  • 2008
    • Medical Physics Journal
      • Hossein Afsharpour, Michel D'Amours, Benoit Coté, Jean-François Carrier, Frank Verhaegen, and Luc Beaulieu: Monte Carlo study on the effect of seed design on the interseed attenuation in permanent prostate implants, Med. Phys. 35 3671 (2008)
      • D Liu, B Reniers, E Poon, M Bazalova, T Rusch, and F Verhaegen: Sci-Sat AM(2): Spectral and dosimetric study of the Xoft electronic brachytherapy system, Med. Phys. 35 3416 (2008)
      • F Ballester, D Granero, J Perez-Calatayud, M Rivard, C Melhus, and M Pujade: Evaluation of the Correction Factor Due to the Lack of Full Scatter Conditions in Cs-137 and Ir-192 Brachytherapy Dosimetric Studies, Med. Phys. 35 2970 (2008)
      • J Perez-Calatayud, D Granero, M Rivard, C Melhus, M Pujades, and F Ballester: Evaluation of Electronic Equilibrium Conditions Near Brachytherapy Sources, Med. Phys. 35 2971 (2008)
      • J Dingley and V Taranenko: Improved Organ Sparing by Electronic Brachytherapy: A Monte Carlo Study, Med. Phys. *35 *2800 (2008)
      • D. Granero, J. Pérez-Calatayud, J. Gimeno, F. Ballester, E. Casal, V. Crispín, and R. van der Laarse: Design and evaluation of a HDR skin applicator with flattening filter, Med. Phys. 35 495 (2008)
    • Physics in Medicine and Biology
      • C O Thiam, V Breton, D Donnarieix, B Habib and L Maigne: Validation of a dose deposited by low-energy photons using GATE, Phys. Med. Biol. 53 No 11 (7 June 2008) 3039-3055
      • Derek Liu, Emily Poon, Magdalena Bazalova, Brigitte Reniers, Michael Evans, Thomas Rusch and Frank Verhaegen: Spectroscopic characterization of a novel electronic brachytherapy system, Phys. Med. Biol. 53 No 1 (7 January 2008) 61-75
  • 2007
    • Medical Physics Journal
      • A Sarfehnia, K Stewart, E Podgorsak, and J Seuntjens: Numerical Feasibility Study of a Novel Absorbed Dose to Water Calorimeter-Based Standard for 192Ir HDR Brachytherapy, Med. Phys. 34 2628 (2007)
  • 2006
    • Medical Physics Journal
      • D. Granero, J. Pérez-Calatayud, E. Casal, F. Ballester, and J. Venselaar: _A dosimetric study on the Ir-192 high dose rate Flexisource _, Med. Phys. 33 4578 (2006)
      • Emily Poon, Brigitte Reniers, Slobodan Devic, Té Vuong, and Frank Verhaegen: Dosimetric characterization of a novel intracavitary mold applicator for 192Ir high dose rate endorectal brachytherapy treatment, Med. Phys. 33 4515 (2006)
      • C Melhus and M Rivard: TG-43U1 Brachytherapy Dosimetry Parameters for Virtual, Med. Phys. 33 2199 (2006)
      • E Casal, J Perez-Calatayud, D Granero, F Ballester, R Cases, and J Venselaar: Monte Carlo Dosimetric Study of the Flexisource Ir-192 HDR Sourc, Med. Phys. 33 2122 (2006)
      • F Ballester, B Meyer, D Granero, J Perez-Calatayud, E Casal, and R Cases: Dosimetric Characteristics of Tm-170 as a Radionuclide for Its Possible Use in Brachytherapy, Med. Phys. 33 2090 (2006)
      • Christopher S. Melhus and Mark J. Rivard: Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources, Med. Phys. 33 1729 (2006)
      • J . Pérez-Calatayud, D. Granero, F. Ballester, V. Crispín, and R. van der Laarse: Technique for routine output verification of Leipzig applicators with a well chamber, Med. Phys. 33 16 (2006)
      • Shirin A. Enger, Arash Rezaei, Per Munck af Rosenschöld, and Hans Lundqvist: Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy, Med. Phys. 33 46 (2006)

Brachytherapy Groups

Below, are few links of groups that use Geant4 in Brachytherapy applications:

Main Medical Physics page

-- PaulGueye - Last Update: 6 January 2011

Edit | Attach | Watch | Print version | History: r11 < r10 < r9 < r8 < r7 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r11 - 2011-01-06 - PaulGueye
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Geant4 All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2023 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback