Searches for Heavy Resonances decaying to a pair of bosons -- Run 2

We work on searches for new heavy resonances (X) that decay into a pair of bosons (W, Z, h) in various final states. The analyses targets heavy resonances with mass greater than ~600 GeV. A particular interest is devoted to the reconstruction of boosted topologies which typically arise when the mass of the resonance X exceeds ~1 TeV.



Mailing list

This common mailing list will allow broader circulation of informations, improve connections between analyses, and simplify the management.

Please subscribe to:

https://e-groups.cern.ch/e-groups/Egroup.do?egroupId=10063563

(go to the tab "Members" and then "Add me")

The e-mail address of the group is: cms-exo-vvsearches@cern.ch



Table of contents



Introduction

In 2015 and beyond, the LHC will run at 13 TeV centre-of-mass energy. Since we will be studying the highest energy proton-proton collisions ever, discoveries are possible with vert little integrated luminosity. As such, CMS must be ready to produce results very quickly. This Twiki will be the organising point for the ExoDiBoson group in Run 2.

Analyses for 13 TeV

Channel Run 1 CADI line Run 2 CADI line Run 2 AN People
Common documentation JME-13-006   AN-15-196
Vhad Vhad EXO-12-024 EXO-15-002 AN-15-211 Andreas Hinzmann, Jennifer Ngadiuba (PhD), Thea Arrestad (PhD), Clemens Lange (UZH), Sal Rappoccio (Buffalo), Maxime Gouzevitch (Lyon), Petar Maksimovic (JHU)
Wlep Vhad EXO-12-021 EXO-15-002 AN-15-197 Clemens Lange, Jennifer Ngadiuba (PhD), Thea Arrestad (PhD), Andreas Hinzmann (UZH), Qun Wang, Mengmeng Wang (PhD), Qiang Li (PKU), Zijun Xu(PhD, PKU) Luca Brianza (PhD, Milano), Sung-Won Lee, Phil Dudero, Jordan Damgov, Nural Akchurin (TTU), Nhan Tran (FNAL)
Zlep Vhad EXO-12-022 EXO-15-002 AN-15-200 Thiago Tomei, Jose Ruiz (PhD), Sergio Novaes (SPRACE-UNESP)
Wlep Hbb EXO-14-010     Mengmeng Wang (PhD), Qiang Li, Qun Wang (PKU), Jennifer Ngadiuba (PhD), Thea Arrestad (PhD), Andreas Hinzmann, Clemens Lange (UZH)
Vlep Htautau       Kerstin Hoepfner, Swagata Mukerjee, Thomas Esch (PhD) (Aachen)
Zlep Hbb     AN-15-186 Shin-Shan Eiko Yu, Jun-Yi Wu (master), Henry Tong (master), Ji-Kong Huang (master), Yu-Hsiang Chang (PhD), Yun-Ju Lu, Raman Khurana (NCU), Alberto Zucchetta, Jacopo Pazzini (Padova)
Vhad Htautau EXO-13-007     Camilla Galloni (PhD), Clemens Lange, Andreas Hinzmann (UZH), Aniello Spiezia (IHEP)
Vhad Hhad EXO-14-009     Thea Arrestad (PhD), Jennifer Ngadiuba (PhD), Andreas Hinzmann, Clemens Lange (UZH), Alice Sady (PhD), Petar Maksimovic (JHU)
Znunu Vhad EXO-11-061     David Romero (PhD), Cesar Bernardes (PhD), Sergio Novaes (SPRACE-UNESP), Eduardo Gregores, Pedro Mercadante (SPRACE-UFABC)
Znunu Hbb     AN-15-186 Alberto Zucchetta, Jacopo Pazzini (Padova)
Hbb Htautau EXO-15-008     Camilla Galloni (PhD), Clemens Lange, Andreas Hinzmann (UZH), Aniello Spiezia (IHEP)
Hbb Hbb boosted EXO-12-053     Angelo Santos, Pedro Mercadante, (SPRACE-UFABC), Maxime Gouzevitch (Lyon), Devdatta Majumder (Kansas), Caterina Vernieri (FNAL), Alice Cocoros (PhD), Petar Maksimovic (JHU)

Common tasks for 13 TeV

First data analysis tasks at 25ns

Task People Status
check event noise filter efficiency on data and MC in dijet sample Jennifer  
WV-analysis: check efficiency of single lepton ID+isolation on data and MC Ivan  
WV-analysis: check efficiency of single lepton triggers on data and MC Jennifer  
WV-analysis: W+jets and ttbar control plots Jennifer, Luca, Qun  
ZV-analysis: check efficiency of double lepton ID+isolation on data and MC Jose  
ZV-analysis: check efficiency of single lepton triggers on data and MC Jose, Thiago  
W-tagging scale factors Qun, Jennifer  
VV-analysis: trigger efficiency Thea  
MET+jet analysis: trigger efficiency David  
MET+jet analysis: MET monitoring as function of data Run David, Thiago  
check modeling of PF jet ID and jet substructure variables in dijet data Thea  
check stability of the jet substructure variables as a function of data Run in dijet, w+jets or ttbar sample Thiago  

General strategy

  • JSON files will arrive at the end of each week. Follow PPD hn to be updated on data certification.
  • Add new data ~every week, check stability and update control plots

Common tasks for 13 TeV preparation (UNCOVERED)

Task People Status Timescale
Cross trigger for V(qq)H(tautau)   not started  
Trigger study for V(qq)H(tautau), H(bb)H(tatuau) Camilla started  

Common tasks for 13 TeV preparation (ONGOING)

Task People Status Timescale
Implementation of boosted tautau in miniAOD Camilla, Aniello BoostedTauIdRun2 twiki October
Validate boosted Z->tautau taggers Camilla   PHYS14
Define and validate W-tagger Raffaele+Andreas+Sal definition in place, final cut optimization for each channel needs to be done April
Single electron, single muon triggers Mengmeng Wang, Qiang Li, Qun Wang (PKU) trigger defined by W' analysis, need to check in MC February
Di-electron triggers Sudha Ahuja   PHYS14
Lepton isolation for boosted Z->ee Jose   PHYS14
Lepton isolation for boosted Z->mumu Henry + Eiko   PHYS14
Signal+background sample requests Together Backgrounds done. High priority signals done. Lower priority signal ongoing. January
Make tracker muon an official ID in muon POG and put it in MiniAOD Thiago   February
Develop and validate b-tagging for H->bb Clemens+Jen+Thea ongoing  
MET definition Peking   PHYS14
Check VV(qqqq) signal and background distributions with Phys14 samples Thea   PHYS14
Quantify how much we can gain from adding VBF categories Xanda + Luca    
Study if softdrop instead of pruning allows easier background estimation from jet mass sideband Jennifer+Sal+Thiago    
Definition of sideband for background estimate (e.g. for ZH->llbb) relaxing a combination of b-tagging and jet substructure Eiko    
Consider pT dependent tau21 cut, to have best sensitivity over full mass range. Or consider finer binning in tau21 (currently only 2 bins) Jordan    
Check softdrop mass stability as a function of resonance mass, measure softdrop mass cut efficiency as a function of jet pT Luca+Sal    

Common tasks for 13 TeV preparation (DONE)


More... Close

Task People Status Timescale
Setup ExoDiBosonNtuple Thiago+Angelo+Jose CSA14+PHYS14 setup running February
Substructure variables in DijetNtuplizer Andreas integration of softdrop in CMSSW done, ntuple done: https://github.com/ahinzmann/DijetRootTreeMaker February
Dijet trigger and dijet trigger with jet mass Maxime+Dylan NEED MORE HELP dijet triggers in place, also single jet with mass November
Di-muon triggers Thiago done November
Pythia8 RS1 graviton + Pythia8 W'/Z' signal sample validation Andreas + Thiago done November
Bulk graviton Madgraph vs. JHU signal sample validation Qun https://indico.cern.ch/event/378476/ March
Check ZZ(llqq) signal and background distributions with Phys14 samples Jose done PHYS14
Check WW(lnuqq) signal and background distributions with Phys14 samples Qun+Jen+Luca done PHYS14
Setup code for W-tagging scale factor from lepton+jets ttbar Qun done PHYS14
Prepare combination of 8 TeV and 13 TeV datacards Thiago+Andreas    
Produce private Phys14 bulk graviton samples PKU   PHYS14
Produce private Phys14 diboson samples with kinematic cuts PKU   PHYS14
Madgraph HVT + Madgraph Bulk graviton + Madgraph radion signal sample validation Xanda + Eiko + Jun-Yi done January
Define strategy to avoid overlap between analyses. What happens to the WW and ZZ analysis strategy if we don't use the Higgs and top mass ranges as control region? Luca    

Recipes

Data Analysis

Global Tags

Always check the official page: https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideFrontierConditions. As of right now, you should use:

Dataset type Tag
Spring15 MC, 25ns asymptotic simulation MCRUN2_74_V9
Spring15 MC, 50ns asymptotic simulation MCRUN2_74_V9A
Run2015B 3.8T data, PromptReco 74X_dataRun2_Prompt_v1

JSON file

The official golden JSON file for 3.8 Tesla data can be found in /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/13TeV/Cert_246908-251883_13TeV_PromptReco_Collisions15_JSON_v2.txt

Utilities for working with JSON files, using them in CRAB and CMSSW can be found in https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideGoodLumiSectionsJSONFile .

Generation

Instructions for Full Simulation as in PHYS14


More... Close

cmsDriver.py Configuration/GenProduction/python/ThirteenTeV/Hadronizer_Tune4C_13TeV_generic_LHE_pythia8_cff.py \
--filein "file:yourLHEfile.lhe" --fileout file:step1.root --mc --eventcontent RAWSIM \
--filetype=LHE \
--customise SLHCUpgradeSimulations/Configuration/postLS1Customs.customisePostLS1 \
--datatier GEN-SIM --conditions POSTLS162_V1::All --step GEN,SIM  \
--magField 38T_PostLS1 --geometry Extended2015 --python_filename step1.py --no_exec -n 10



More... Close

cmsDriver.py step2 --filein "file:step1.root" \
--fileout file:step2.root --pileup_input "dbs:/MinBias_TuneA2MB_13TeV-pythia8/Fall13-POSTLS162_V1-v1/GEN-SIM" \
--mc --eventcontent RAWSIM --inputEventContent REGEN --pileup AVE_20_BX_25ns \
--customise SLHCUpgradeSimulations/Configuration/postLS1Customs.customisePostLS1 \
--datatier GEN-SIM-RAW --conditions PHYS14_25_V1 --step GEN:fixGenInfo,DIGI,L1,DIGI2RAW,HLT:GRun \
--magField 38T_PostLS1 --python_filename step2.py --no_exec -n 10



More... Close

cmsDriver.py step3 --filein "file:step2.root" \
--fileout file:step3.root --mc --eventcontent AODSIM \
--customise SLHCUpgradeSimulations/Configuration/postLS1Customs.customisePostLS1 \
--datatier AODSIM --conditions PHYS14_25_V1 --step RAW2DIGI,L1Reco,RECO \
--magField 38T_PostLS1 --python_filename step3.py --no_exec -n 10



More... Close

cmsDriver.py step4 --filein file:step3.root \
--fileout patTuple.root --mc --eventcontent MINIAODSIM \
--runUnscheduled --datatier MINIAODSIM --conditions PHYS14_25_V1 \
--step PAT --python_filename patTuple.py --no_exec -n 10


Instructions for Herwig Hadronization

Instructions for checking LHE files

https://github.com/syuvivida/DibosonBSMSignal_13TeV/tree/master/analyzer

PU weights

The PU distribution for data can easily be obtained by running

pileupCalc.py -i MYJSON.txt --inputLumiJSON INPUTLUMIJSON.txt --calcMode true --minBiasXsec 80000 --maxPileupBin 52 --numPileupBins 52 MyDataPileupHistogram_true.root

where MYJSON.txt is the JSON file you are using for your dataset, for instance /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/13TeV/Cert_246908-258750_13TeV_PromptReco_Collisions15_25ns_JSON.txt and the current recommended input lumi JSON is found at the soft link /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions15/13TeV/PileUp/pileup_latest.txt

The correct PU scenario for MC can be found at PdmV,

where the weights for Run2 25 ns are here

https://github.com/cms-sw/cmssw/blob/CMSSW_8_0_X/SimGeneral/MixingModule/python/mix_2015_25ns_Startup_PoissonOOTPU_cfi.py

under

probValue = cms.vdouble(
4.8551E-07

.

To implement the weights follow the instructions at the PU reweighing TWiki, or have a look at an example here.

* The general recipe followed for RunI can be found here.

test.C use test.C to get data and one MC sample, here we use TTbar. Then you will get a root file named test.root .

 for each event, reweight the pileup
   int bin = hR1->FindBin(nVtx);
   pileupWeight = hR1->GetBinContent(bin);

Event filters

  • How to implement and store event filter information with the full list of available event filters can be found in the dijet code

Implementing list-based event filters:

List-based event filters cannot be implemented at the JSON file level. You have to implement it in the process.source. Assuming the list is in the form:

256630:6:5253852
256630:6:5261630
256630:6:5277563

i.e, Run:Lumi:Event, you can use the following code:

listEventsToSkip = []
fileEventsToSkip = open("eventsToSkip.txt","r")

for line in fileEventsToSkip:
    cleanLine = line.rstrip()
    listEventsToSkip.append(cleanLine+"-"+cleanLine)

rangeEventsToSkip = cms.untracked.VEventRange(listEventsToSkip)
process.source.eventsToSkip = rangeEventsToSkip

Trigger

Jets

  process.load('CommonTools/PileupAlgos/Puppi_cff')
  process.puppi.candName = cms.InputTag('packedPFCandidates')
  process.puppi.vertexName = cms.InputTag('offlineSlimmedPrimaryVertices')  
  process.ak8PuppiJets = ak8PFJetsCHS.clone( src = 'puppi', jetPtMin = fatjet_ptmin )
  process.ak8PuppiJetsPruned = ak8PFJetsCHSPruned.clone( src = 'puppi', jetPtMin = fatjet_ptmin )
  process.ak8PuppiJetsSoftDrop = ak8PFJetsCHSSoftDrop.clone( src = 'puppi', jetPtMin = fatjet_ptmin, beta = betapar  )
  process.NjettinessAK8Puppi = process.NjettinessAK8.clone( src = 'ak8PuppiJets' )
  • Recipe for the ATLAS W-tagger:
git fetch official-cmssw CMSSW_7_4_X
git cms-addpkg RecoJets/JetProducers
git cherry-pick bff89e7168d580e1c735299c82469490ffaaa89a 516d91e47bd432a302df4c98a190e0b0e067025f

from RecoJets.Configuration.RecoPFJets_cff import *
process.ak10CHSJetsTrimmed = ak8PFJetsCHSTrimmed.clone( src = 'chs', jetPtMin = fatjet_ptmin, rParam = 1.0, rFilt = 0.2, trimPtFracMin = 0.05 )

process.ECFAK10 = cms.EDProducer("ECFAdder",
             src = cms.InputTag("ak10CHSJetsTrimmed"),
             Njets = cms.vuint32(1, 2, 3),
             beta = cms.double(1.0),        # CMS default is 1
             )

Lepton ID

  • Latest recipe for HEEP is v6.0, recommended for RunII -50ns :
twiki , Sam Harper latest presentation . To get the HEEP automatically: git cms-merge-topic ikrav:egm_id_74X_v2

Isolation

Cross sections

The cross sections used for

Jet mass cuts

December Jamboree

  • For the December Jamboree, we use the following:
    • Pruned jet masses
    • L2+L3 corrections (for the simulation), L2+L3+L2L3Residuals (for the data)
    • Window for W+Z: 65<mj<105 ( or in words from "80 - 15 GeV " to "90 + 15 GeV ")
    • Window for W+Z with categorization: 65<mj<85, 85<mj<105
    • Window for H: 105<mj< 135 ( or in words from "125 - 20 GeV " to "125 + 10 GeV ")

Rho-ratio-based background estimate

The rho-ratio method is simple in practice. The procedure is

  • Select control-region events with 200 < pt < 350 GeV, m > 28.571 GeV, tau21 < 0.65
  • Select a pre-tagged signal region with pt > 350 GeV, m > 50 GeV
  • Select the signal region that is the pre-tagged region, plus the tau21 < 0.6 cut.
  • Derive a fake rate from the control region.
  • Apply the fake rate to the pre-tagged signal region.

Software for the rho-ratio-based background estimate is described here. Snapshot :

cmsrel CMSSW_7_4_4
cd CMSSW_7_4_4/src
cmsenv
git clone https://github.com/rappoccio/PredictedDistribution.git Analysis/PredictedDistribution
git clone https://github.com/rappoccio/EXOVV.git Analysis/EXOVV 

N-subjettiness (tau21) cuts

December Jamboree

Use different cuts for all-hadronic VV and leptonic analyses:

  • all-hadronic analysis:
    • HP tau21 < 0.45
    • LP 0.45 < tau21 < 0.75
  • leptonic analyses:
    • HP tau21 < 0.6
    • LP 0.6 < tau21 < 0.75



NEW MINIAOD SAMPLES

Beside each sample you find the number of initial entries taken from DAS. For the cross sections value of each sample, please refer to the tables of the old miniAOD, since the xsec are the same.

VW analysis

Backgrounds

/WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 10152718
/WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 5221599
/WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1745914
/WJetsToLNu_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1039152

/TT_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 19757190

/WW_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 993640
/WZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 978512
/ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 996944

/ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 984400
/ST_t-channel_top_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 3299800
/ST_t-channel_antitop_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1680200
/ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 988500
/ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v2/MINIAODSIM 995600

Other backgrounds

/WJetsToLNu_HT-600To800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 4041997
/WJetsToLNu_HT-800To1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1574633
/WJetsToLNu_HT-1200To2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 255637
/WJetsToLNu_HT-2500ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 253036

/WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 24184766
/WJetsToLNu_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 72207128

/TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 11344206
/TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v3/MINIAODSIM 42784971

/TTJets_HT-600to800_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 5119009
/TTJets_HT-800to1200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 3510897
/TTJets_HT-1200to2500_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1014678
/TTJets_HT-2500toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 507842

/WWToLNuQQ_13TeV-powheg/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1951600
/WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 24714550
/ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 18790122

Signals

#### RS Graviton:

/RSGravToWWToLNQQ_kMpl01_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32354
/RSGravToWWToLNQQ_kMpl01_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32448
/RSGravToWWToLNQQ_kMpl01_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32252
/RSGravToWWToLNQQ_kMpl01_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32275
/RSGravToWWToLNQQ_kMpl01_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32021
/RSGravToWWToLNQQ_kMpl01_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 31295
/RSGravToWWToLNQQ_kMpl01_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32032
/RSGravToWWToLNQQ_kMpl01_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 31374
/RSGravToWWToLNQQ_kMpl01_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32194
/RSGravToWWToLNQQ_kMpl01_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32207
/RSGravToWWToLNQQ_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 32351

#### Bulk Graviton:

/BulkGravToWWToWlepWhad_narrow_M-600_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49600
/BulkGravToWWToWlepWhad_narrow_M-800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/BulkGravToWWToWlepWhad_narrow_M-1000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/BulkGravToWWToWlepWhad_narrow_M-1200_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/BulkGravToWWToWlepWhad_narrow_M-1400_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/BulkGravToWWToWlepWhad_narrow_M-1600_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49200
/BulkGravToWWToWlepWhad_narrow_M-1800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 48400
/BulkGravToWWToWlepWhad_narrow_M-2000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 14800
/BulkGravToWWToWlepWhad_narrow_M-2500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 48400
/BulkGravToWWToWlepWhad_narrow_M-3000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49800
/BulkGravToWWToWlepWhad_narrow_M-3500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49700
/BulkGravToWWToWlepWhad_narrow_M-4000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/BulkGravToWWToWlepWhad_narrow_M-4500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 47600

#### Wprime:

/WprimeToWZToWlepZhad_narrow_M-600_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-1000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-1200_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-1400_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-1800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49800
/WprimeToWZToWlepZhad_narrow_M-2500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-3000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 49600
/WprimeToWZToWlepZhad_narrow_M-3500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000
/WprimeToWZToWlepZhad_narrow_M-4500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 50000

VV analysis

Backgrounds

/QCD_Pt_170to300_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 3364368
/QCD_Pt_300to470_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 2935633
/QCD_Pt_470to600_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1937537
/QCD_Pt_600to800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1964128
/QCD_Pt_800to1000_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1937216
/QCD_Pt_1000to1400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1487136
/QCD_Pt_1400to1800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 197959
/QCD_Pt_1800to2400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 193608
/QCD_Pt_2400to3200_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 194456
/QCD_Pt_3200toInf_TuneCUETP8M1_13TeV_pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 192944

/ZJetsToQQ_HT600toInf_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 855865
/WJetsToQQ_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 1008034
/TT_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 19757190

Signals

/BulkGravToWW_narrow_M-600_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-1000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-1200_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-1400_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-1600_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 29000
/BulkGravToWW_narrow_M-1800_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-2000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-2500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 23400
/BulkGravToWW_narrow_M-3000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-3500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-4000_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000
/BulkGravToWW_narrow_M-4500_13TeV-madgraph/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 30000

VZ analysis

Backgrounds

/DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 2725655
/DYJetsToLL_M-50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 973937
/DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v2/MINIAODSIM 1067758
/DYJetsToLL_M-50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 998912
/WW_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 993640
/WZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 978512
/ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v1/MINIAODSIM 996944

Samples for WW analysis - MC run II

VERY IMPORTANT!!!

For the MC samples produced with madgraph or amcatnlo, the events must be reweighted. From here: https://twiki.cern.ch/twiki/bin/viewauth/CMS/LHEReaderCMSSW#How_to_use_weights

The reading of the nominal weight must always be activated otherwise events with generators like Madgraph5_aMCatNLO will give wrong results.

 
std::vector<double>& evtWeights = genEvtInfo->weights();
double theWeight = genEvtInfo->weight();
// and some of your code...

Signal: RSGraviton - 13 TeV - 25 ns

NB: xsec = xsec(RSG)*BR(RSG->WW)*BR(WW->lvqq)*2

process miniAOD name 13TeV xsec Nevents other
RSGravToWWToLNQQ _kMpl01_M-600 /RSGravToWWToLNQQ_kMpl01_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 4.76735pb 32354  
RSGravToWWToLNQQ _kMpl01_M-800 /RSGravToWWToLNQQ_kMpl01_M-800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 1.16691pb 31906  
RSGravToWWToLNQQ _kMpl01_M-1000 /RSGravToWWToLNQQ_kMpl01_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.377865pb 32448  
RSGravToWWToLNQQ _kMpl01_M-1200 /RSGravToWWToLNQQ_kMpl01_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.144482pb 32252  
RSGravToWWToLNQQ _kMpl01_M-1400 /RSGravToWWToLNQQ_kMpl01_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0616708pb 32275  
RSGravToWWToLNQQ _kMpl01_M-1600 /RSGravToWWToLNQQ_kMpl01_M-1600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0288651pb 31971  
RSGravToWWToLNQQ _kMpl01_M-1800 /RSGravToWWToLNQQ_kMpl01_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0141334pb 32021  
RSGravToWWToLNQQ _kMpl01_M-2000 /RSGravToWWToLNQQ_kMpl01_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.00751431pb 31295  
RSGravToWWToLNQQ _kMpl01_M-2500 /RSGravToWWToLNQQ_kMpl01_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.00167726pb 32032  
RSGravToWWToLNQQ _kMpl01_M-3000 /RSGravToWWToLNQQ_kMpl01_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000443483pb 31374  
RSGravToWWToLNQQ _kMpl01_M-3500 /RSGravToWWToLNQQ_kMpl01_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000133915pb 32194  
RSGravToWWToLNQQ _kMpl01_M-4000 /RSGravToWWToLNQQ_kMpl01_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0000424117pb 32207  
RSGravToWWToLNQQ _kMpl01_M-4500 /RSGravToWWToLNQQ_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0000130705pb 31551  

Signal: BulkGraviton - 13 TeV - 25ns

NB: xsec = xsec(BulkG)*BR(BulkG ->WW)*BR(WW->lvqq)*2

process miniAOD name 13TeV xsec Nevents other
BulkGravToWWToWlepWhad _narrow_M-800 /BulkGravToWWToWlepWhad_narrow_M-800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.001332687 pb 50000  
BulkGravToWWToWlepWhad _narrow_M-1000 /BulkGravToWWToWlepWhad_narrow_M-1000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000359194 pb 50000  
BulkGravToWWToWlepWhad _narrow_M-1200 /BulkGravToWWToWlepWhad_narrow_M-1200_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000119842 pb 50000  
BulkGravToWWToWlepWhad _narrow_M-1400 /BulkGravToWWToWlepWhad_narrow_M-1400_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000045798 pb 50000  
BulkGravToWWToWlepWhad _narrow_M-1600 /BulkGravToWWToWlepWhad_narrow_M-1600_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM ? pb 49200  
BulkGravToWWToWlepWhad _narrow_M-1800 /BulkGravToWWToWlepWhad_narrow_M-1800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM ? pb 48400  
BulkGravToWWToWlepWhad _narrow_M-2000 /BulkGravToWWToWlepWhad_narrow_M-2000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000004197 pb 50000  
BulkGravToWWToWlepWhad _narrow_M-2500 /BulkGravToWWToWlepWhad_narrow_M-2500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000000786 pb 48400  
BulkGravToWWToWlepWhad _narrow_M-3000 /BulkGravToWWToWlepWhad_narrow_M-3000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.000000172 pb 49800  
BulkGravToWWToWlepWhad _narrow_M-4000 /BulkGravToWWToWlepWhad_narrow_M-4000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM ? pb 50000  
BulkGravToWWToWlepWhad _narrow_M-4500 /BulkGravToWWToWlepWhad_narrow_M-4500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM ? pb 50000  

Signal: Wprime - 13 TeV - 25ns

NB: xsec = [xsec(W'+)+xsec(W'-)]*BR(W'->WZ)*BR(WZ->lvqq) with BR(W->lv) = 0.322 and BR(Z->qq) = 0.6991

process miniAOD name 13TeV xsec Nevents other
WprimeToWZToWlepZhad _narrow_M-800 /WprimeToWZToWlepZhad_narrow_M-800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.153250 pb 50000  
WprimeToWZToWlepZhad _narrow_M-1000 /WprimeToWZToWlepZhad_narrow_M-1000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.102236 pb 50000  
WprimeToWZToWlepZhad _narrow_M-1200 /WprimeToWZToWlepZhad_narrow_M-1200_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.056357 pb 50000  
WprimeToWZToWlepZhad _narrow_M-1400 /WprimeToWZToWlepZhad_narrow_M-1400_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.031283 pb 50000  
WprimeToWZToWlepZhad _narrow_M-1600 /WprimeToWZToWlepZhad_narrow_M-1600_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.017844 pb 49200  
WprimeToWZToWlepZhad _narrow_M-1800 /WprimeToWZToWlepZhad_narrow_M-1800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.010458 pb 49800  
WprimeToWZToWlepZhad _narrow_M-2000 /WprimeToWZToWlepZhad_narrow_M-2000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.006273 pb 50000  
WprimeToWZToWlepZhad _narrow_M-2500 /WprimeToWZToWlepZhad_narrow_M-2500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0018842 pb 50000  
WprimeToWZToWlepZhad _narrow_M-3000 /WprimeToWZToWlepZhad_narrow_M-3000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.0006039 pb 49600  
WprimeToWZToWlepZhad _narrow_M-3500 /WprimeToWZToWlepZhad_narrow_M-3500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 0.00019991 pb 50000  
WprimeToWZToWlepZhad _narrow_M-4000 /WprimeToWZToWlepZhad_narrow_M-4000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 6.4901e-09 pb 50000  
WprimeToWZToWlepZhad _narrow_M-4500 /WprimeToWZToWlepZhad_narrow_M-4500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM ? pb 50000  

Backgrounds

The cross sections for the background processes are taken from Ref [1-3] (NLO or NNLO). For the W+Jets HT bins the cross section is the one given in MCM. If only the lepton decay of the W is included in the sample, the cross section is multiplied by BR(W->lv)=0.322 with l=e,mu,tau.

[1] https://twiki.cern.ch/twiki/bin/viewauth/CMS/StandardModelCrossSectionsat13TeV

[1b] StandardModelCrossSectionsat13TeVInclusive

[2] https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO

[3] https://twiki.cern.ch/twiki/bin/viewauth/CMS/SingleTopSigma

[4] 1Billion Xsec

[5] XsecTaskForce

Background - 13 TeV - 25ns

process miniAOD name 13TeV xsec Nevents other
WJetsToLNu _TuneCUETP8M1 /WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 61526.7pb 24151270 Ref [1]
WJetsToLNu _HT-100To200 /WJetsToLNu_HT-100To200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 1292pb -> 1347pb *K=1.21 10142187 MCM ->Ref[4]
WJetsToLNu _HT-200To400 /WJetsToLNu_HT-200To400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 385.9pb -> 360pb*K=1.21 5231856 MCM ->Ref[4]
WJetsToLNu _HT-400To600 /WJetsToLNu_HT-400To600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v3/MINIAODSIM 47.9pb -> 48.9pb*K=1.21 1901705 MCM ->Ref[4]
WJetsToLNu _HT-600ToInf /WJetsToLNu_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 19.9pb -> 18.77pb*K=1.21 1036108 MCM ->Ref[4]
TT_TuneCUETP8M1_13TeV-powheg-pythia8 /TT_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 831.76pb 19665194 Ref [2]
WW_TuneCUETP8M1 /WW_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 118.7pb 994416 Ref [1]
ZZ_TuneCUETP8M1 /ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v3/MINIAODSIM 15.4pb -> 16.5pb 996168 Ref [1] ->Ref[1b], [4]
WZ_TuneCUETP8M1 /WZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 66.1pb -> 47.13pb 991232 Ref [1] ->Ref[4]
ST_s-channel_4f_leptonDecays (top+antitop) /ST_s-channel_4f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 11.36*0.322pb 984400 Ref [3]
ST_t-channel_top_4f_leptonDecays (only top) /ST_t-channel_top_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 136.02*0.322pb 3299800 Ref [3]
ST_t-channel_antitop_4f_leptonDecays (only antitop) /ST_t-channel_antitop_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 80.95*0.322pb 1695400 Ref [3]
ST_tW_antitop_5f_inclusiveDecays (only antitop) /ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 35.6pb 1000000 Ref [3]
ST_tW_top_5f_inclusiveDecays (only top) /ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 35.6pb 995600 Ref [3]

Additional background samples - 13 TeV - 25ns

process miniAOD name 13TeV xsec Nevents other
WWToLNuQQ _13TeV-powheg /WWToLNuQQ_13TeV-powheg/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 49.997 pb 1969600 Ref [4]
WZTo1L1Nu2Q _13TeV_amcatnloFXFX_madspin_pythia8 /WZTo1L1Nu2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 10.71 pb 24711046 Ref [4]
ZZTo2L2Q _13TeV_amcatnloFXFX_madspin_pythia8 /ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 3.22 pb 18898680 Ref [4]
ST_t-channel_5f_leptonDecays (top+antitop) /ST_t-channel_5f_leptonDecays_13TeV-amcatnlo-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 216.99*0.322pb 2966200 Ref [3]
TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 /TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 831.76pb 11339232 Ref [2]
TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 /TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 831.76pb 42730273 Ref [2]

Background - 13 TeV - 50ns

process miniAOD name 13TeV xsec Nevents other
WJetsToLNu _TuneCUETP8M1 /WJetsToLNu_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 61526.7pb 24089991 Ref [1]
TT_TuneCUETP8M1_13TeV-powheg-pythia8 /TT_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v3/MINIAODSIM 831.76pb 19665194 Ref [2]
ST_t-channel_top_4f_leptonDecays /ST_t-channel_top_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 136.02*0.322pb 1273800 Ref [3]
ST_t-channel_antitop_4f_leptonDecays /ST_t-channel_antitop_4f_leptonDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 80.95*0.322pb 681900 Ref [3]
ST_tW_top_5f_inclusiveDecays /ST_tW_top_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 35.6pb 998400 Ref [3]
ST_tW_antitop_5f_inclusiveDecays /ST_tW_antitop_5f_inclusiveDecays_13TeV-powheg-pythia8_TuneCUETP8M1/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 35.6pb 1000000 Ref [3]
WW_TuneCUETP8M1 /WW_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 118.7pb 989608 Ref [1]
ZZ_TuneCUETP8M1 /ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 15.4pb -> 16.5pb 998848 Ref [1]
WZ_TuneCUETP8M1 /WZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 66.1pb -> 47.13pb 996920 Ref [1]

Additional background samples - 13 TeV - 50ns

process miniAOD name 13TeV xsec Nevents other
TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8 /TTJets_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 831.76pb 4994250 Ref [2]
TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8 /TTJets_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 831.76pb 4992231 Ref [2]

Data samples 50 ns

In order to get metFilters from TriggerResults in PromtReco use runs only since run 251585:

sample Nevents
/SingleMuon/Run2015B-PromptReco-v1/MINIAOD 2814400
/SingleElectron/Run2015B-PromptReco-v1/MINIAOD 2489088

for the earlier run range (251162-251562) use the

sample Nevents
/SingleElectron/Run2015B-17Jul2015-v1/MINIAOD 1027225
/SingleMuon/Run2015B-17Jul2015-v1/MINIAOD 1039658
Please note that you should rerun HBHE filter for all runs. Please refer here.

Other filters can be obtained from TriggerResults. You should apply filteres that are marked "TO BE USED", have a look here.


Samples for ZZ semileptonic

Background - 13 TeV - 50ns

process miniAOD name 13TeV xsec Nevents other
DYJetsToLL _M-50_HT-100To200 /DYJetsToLL_M-50_HT-100to200_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 139.4 pb *K=1.23 2721604 MCM
DYJetsToLL _M-50_HT-200To400 /DYJetsToLL_M-50_HT-200to400_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 42.75 pb *K=1.23 973134 MCM
DYJetsToLL _M-50_HT-400To600 /DYJetsToLL_M-50_HT-400to600_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 5.497 pb *K=1.23 1049242 MCM
DYJetsToLL _M-50_HT-600ToInf /DYJetsToLL_M-50_HT-600toInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 2.21 pb *K=1.23 998912 MCM
WW_TuneCUETP8M1 /WW_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 118.7pb 989608 Ref [1]
ZZ_TuneCUETP8M1 /ZZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 15.4pb -> 16.5pb 998848 Ref [1]
WZ_TuneCUETP8M1 /WZ_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 66.1pb -> 47.13pb 996920 Ref [1]


Samples for WW all-hadronic

Quick search for run II samples: https://cmsweb.cern.ch/das/request?view=list&limit=50&instance=prod%2Fglobal&input=dataset%3D%2F*%2FRunIISpring15DR74-Asympt*%2FMINIAODSIM MCM: https://cms-pdmv.cern.ch/mcm/requests?member_of_campaign=RunIIWinter15GS&range=EXO-RunIIWinter15GS-00194,EXO-RunIIWinter15GS-00223&page=0&shown=127&limit=100

QCD background - 50ns

process miniAOD name Nevents Xsec [/pb]
QCD
  /QCD_Pt_300to470_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 2930578 7823.0
  /QCD_Pt_470to600_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 1939229 648.2
  /QCD_Pt_600to800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 1890256 186.9
  /QCD_Pt_800to1000_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 1911296 32.293
  /QCD_Pt_1000to1400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v2/MINIAODSIM 1461216 9.83
  /QCD_Pt_1400to1800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 197959 0.842650
  /QCD_Pt_1800to2400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 194924 0.114943
  /QCD_Pt_2400to3200_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 198383 0.006830
  /QCD_Pt_3200toInf_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt50ns_MCRUN2_74_V9A-v1/MINIAODSIM 188696 0.000165

Signal - 25ns

process miniAOD name Nevents Xsec [/pb]
BulkWW
  /BulkGravToWW_narrow_M-600_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-1000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-1200_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-1400_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-1600_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-1800_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-2000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-2500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-3000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-3500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-4000_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /BulkGravToWW_narrow_M-4500_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
RS1WW
  /RSGravToWW_kMpl01_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM    
  /RSGravToWW_kMpl01_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-1600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM    
  /RSGravToWW_kMpl01_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /RSGravToWW_kMpl01_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
RS1ZZ
WprimeToWZ
  /WprimeToWZ_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-1600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM    
  /WprimeToWZ_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /WprimeToWZ_M-800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
QstarToQW
  /QstarToQW_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-1600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-5000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-6000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-7000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQW_M-800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
QstarToQZ
  /QstarToQZ_M-1000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-1200_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-1400_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-1600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-1800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-2000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-2500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-3000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-3500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-4000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-4500_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-5000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-6000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-600_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-7000_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    
  /QstarToQZ_M-800_TuneCUETP8M1_13TeV-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM    

QCD background - 25ns

process miniAOD name Nevents Xsec [/pb]
QCD
  /QCD_Pt_170to300_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 3364368 117276
  /QCD_Pt_300to470_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 2933611 7823.0
  /QCD_Pt_470to600_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 1936832 648.2
  /QCD_Pt_600to800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v3/MINIAODSIM 1964128 186.9
  /QCD_Pt_800to1000_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 1937216 32.293
  /QCD_Pt_1000to1400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 1487136 9.4183
  /QCD_Pt_1400to1800_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 197959 0.842650
  /QCD_Pt_1800to2400_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 193608 0.114943
  /QCD_Pt_2400to3200_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 194456 0.006830
  /QCD_Pt_3200toInf_TuneCUETP8M1_13TeV_pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 192944 0.000165

Other backgrounds - 25ns

process miniAOD name Nevents Xsec [/pb]
Z+jets /ZJetsToQQ_HT600toInf_13TeV-madgraph/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v1/MINIAODSIM 982095 5.67
W+jets /WJetsToQQ_HT-600ToInf_TuneCUETP8M1_13TeV-madgraphMLM-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 1006060 95.14
TTbar /TT_TuneCUETP8M1_13TeV-powheg-pythia8/RunIISpring15DR74-Asympt25ns_MCRUN2_74_V9-v2/MINIAODSIM 19665194 831.76
New re-reco 25 ns QCD samples can be found at /*QCD*/RunIISpring15MiniAODv2-74X_mcRun2_asymptotic_v2-v*/MINIAODSIM

Available datasets - 25ns

Dataset Location GoldenJSON Lumi [/pb]
/JetHT/Run2015D-PromptReco-v3/MINIAOD + /JetHT/Run2015D-PromptReco-v4/MINIAOD /pnfs/psi.ch/cms/trivcat/store/t3groups/uniz-higgs/Data_25ns/JetHT/ Cert_246908-258159_13TeV_PromptReco_Collisions15_25ns_JSON_v3.txt 578.31

Software

The CMSSW release to be used is CMSSW_7_4_3 for now. If the whole concept of analysis releases materializes, we should definitely use one of those. As it is now, we should stay with the "tried and true" method of using a release plus a standard set of patches. Also, we should keep an eye on the MiniAOD concept, and see if we it is compatible with our substructure techniques.

For the grid-based portion of our analysis: we must use CRAB3. Instructions are available here.

Instruction to download and compile the ExoDiBosonResonances analysis code

The most updated version is available in the branch Analysis74X of the GitHub repository. The code can be obtained and compiled as follows:


cmsrel CMSSW_7_4_9_patch1 cd CMSSW_7_4_9_patch1/src cmsenv git cms-init # This will allow you to checkout packages in official CMSSW.

# IF you want to use the predicted distribution for the rho ratio analysis : git clone https://github.com/rappoccio/PredictedDistribution.git Analysis/PredictedDistribution

git clone -b Analysis74X git@github.com:cms-edbr/ExoDiBosonResonancesRun2.git ExoDiBosonResonances scram b -j 9 <br />

Limit code

The datacards and scripts of the final 8 TeV analysis are stored on git. Recipes how to run them and how to combine 8 and 13 TeV can be found here ExoDiBosonCombination.

The dijet-shape fit limit code for 8 and 13 TeV for the fully hadronic VV and HH analyses is documented here PFlowAnalysisFullHadronicVVLimitCode.

EXO-WW frameworks synchronization

The code for the synchronization of the different frameworks is here:

https://github.com/lbrianza/EXOSynch

setup:

git clone https://github.com/lbrianza/EXOSynch
cd EXOSynch
make

Synchronization:

  • let's use a signal sample:
/RSGravitonToWW_kMpl01_M_1000_Tune4C_13TeV_pythia8/Phys14DR-PU20bx25_tsg_PHYS14_25_V1-v2/MINIAODSIM
  • each analysis group produces two synch-ntuples (one for electrons and one for the muon category) starting from this dataset.

The synch-ntuple format and the selection to be applied are described in the synchVar.txt file inside the repository. Very important: The names of the branches must match exactly the names listed in the file!!!

  • Then, each group puts the two ntuples in a public folder (see the paths below)

How to check the synchronization - assume we have two ntuples: for example, RSGraviton1000Milan.root and RSGraviton1000Zurich.root

  • code 1:
./Print_SyncPlots WW RSGrav Milan RSGraviton1000Milan.root treeName Zurich RSGraviton1000Zurich.root treeName > events.txt

this code takes the two ntuples RSGraviton1000Milan.root and RSGraviton1000Zurich.root and writes the list of common and different events between the two ntuples into the events.txt file. NB: don't care about the pdf file that the code creates.

the options in input are: channel signalName group1 ntuple1 treeName1 group2 ntuple2 treeName2

(for an example of the output: look into the EXAMPLE/events.txt file. )

  • code 2:
root -b compareSync.C\(\"WW\",\"Milan\",\"RSGraviton1000Milan\",\"treeName\",\"Zurich\",\"RSGraviton1000Zurich\",\"treeName\",\"\",\"\"\)

this code takes the two ntuples RSGraviton1000Milan.root and RSGraviton1000Zurich.root and plots the distributions of the two ntuples in the same canvas. You can also apply some selection through this line in the code:

selection="(njets>=1)"

(for an example of the output: look at the EXAMPLE/PlotsDiff_WW_Milan_Zurich.pdf file)

List of synch-ntuple folders (one for each group):

  • MILAN GROUP: /afs/cern.ch/user/l/lbrianza/work/public/MilanSynchNtuples
  • ZURICH GROUP: /afs/cern.ch/user/j/jngadiub/public/WW_Synch
  • PEKING GROUP:/afs/cern.ch/user/q/quwang/public/Syn
  • KARLSRUHER GROUP: /afs/cern.ch/work/i/ishvetso/public/synchronization_WW_Karlsruhe

Status of synchronization:

Look here: https://docs.google.com/spreadsheets/d/1PlnZIpSDltiCrBEFcWoa8LpHvR5YasqaQ3tgxc4X8TM/edit?pli=1#gid=444357523

PHYS14 Analysis Note

svn co -N svn+ssh://svn.cern.ch/reps/tdr2 myDir # where myDir is a placeholder for a name of your choice -- one time only!
cd myDir
svn update utils
svn update -N notes
svn update notes/AN-15-037
eval `./notes/tdr runtime -csh` # for tcsh. use -sh for bash.
cd notes/AN-15-037/trunk
# (edit the template, then to build the document)
tdr --style=an b AN-15-037

You can commit your changes with

svn commit -m "commit message"

New files will first need to be added with

svn add NewFileNames

before they can be committed.

Edit | Attach | Watch | Print version | History: r1 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r1 - 2015-11-05 - unknown
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback