TWiki> Main Web>TWikiUsers>CameliaMironov>Works>HIMuons (revision 11)EditAttachPDF

Number of muons in HI generators

Problem

  • The single muons from 2 different HYDJET samples, from HYDJET and AMPT, from pp data scaled and pp PYTHIA scaled are not consistent. The numbers, presented here collected by Raphael. I stole the below table, to show the issue.

deraph_muons.png

Preliminary thoughts

  • pp->PbPb, not compare apple to apple (one reconstructed mu other gen, also different energy);
  • HYDJET1-HYDJET2 : probably different settings; also 4TeV is produced in cMSSW_21X, the second in 3XY
  • HYDJET-AMPT : allowed decay region (at gen or by GEANT?); HYDJET has the CMSSW PYTHIA default, everything with ctau<10mm will be decayed by PYTHIA/HYDJET

  • pp: data_MC comparison (CMSSW_3_5_6 reprocessing of 7 TeV minimum-bias sample PYTHIA D6T tune, CTEQ6L PDF): CMS DP-2010/020 -- this is minbias comparison;
    • the used config file;
    • which actually uses this file;
    • same file, with different name for CMSSW>3_8_x) ...same processes

  • HI: HYDJET minbias setting
    • HYDJET-4TeV : cfg, Dongho's twiki with location of files and plots
    • HYDJET-2.76TeV:
      • production cfg from DBS, which calls Hydjet_Quenched_MinBias_2760GeV_cfi.py

MINBIAS SETTINGS
PYTHIA HYDJET_4TeV HYDJET_2.76TeV
 processParameters = cms.vstring(
            'MSEL=0         ! User defined processes', 
            'MSUB(11)=1     ! Min bias process f_i f_j   -> f_i f_j', 
            'MSUB(12)=1     ! Min bias process f_i fb_i -> f_k _fb_k', 
            'MSUB(13)=1     ! Min bias process f_i fb_i -> gg, 
            'MSUB(28)=1     ! Min bias process f_i g     -> f_i g', 
            'MSUB(53)=1     ! Min bias process gg       -> f_k fb_k', 
            'MSUB(68)=1     ! Min bias process gg->gg', 
            'MSUB(92)=1     ! Min bias process, single diffractive XB', 
            'MSUB(93)=1     ! Min bias process, single diffractive AX', 
            'MSUB(94)=1     ! Min bias process, double diffractive', 
            'MSUB(95)=1     ! Min bias process low-pT productions'),
        # This is a vector of ParameterSet names to be read, in this order
        parameterSets = cms.vstring(
            'pythiaUESettings', 
            'processParameters') 
 process.GlobalTag.globaltag = 'MC_31X_V2::All'
process.generator = cms.EDFilter("HydjetGeneratorFilter",
    aBeamTarget = cms.double(208.0),
    allowEmptyEvents = cms.bool(False),
    bFixed = cms.double(0),
    bMax = cms.double(30.0),
    bMin = cms.double(0.0),
    cFlag = cms.int32(1),
    comEnergy = cms.double(4000.0),
    doCollisionalEnLoss = cms.bool(True),
    doRadiativeEnLoss = cms.bool(True),
    firstEvent = cms.untracked.uint32(1),
    firstRun = cms.untracked.uint32(1),
    fracSoftMultiplicity = cms.double(1.0),
    hadronFreezoutTemperature = cms.double(0.14),
    hydjetMode = cms.string('kHydroQJets'),
    maxEventsToPrint = cms.untracked.int32(0),
    maxLongitudinalRapidity = cms.double(3.75),
    maxTransverseRapidity = cms.double(1.0),
    nMultiplicity = cms.int32(26000),

    pythiaPylistVerbosity = cms.untracked.int32(0),
    qgpInitialTemperature = cms.double(1.0),   
    qgpNumQuarkFlavor = cms.int32(0),
    qgpProperTimeFormation = cms.double(0.1)
    rotateEventPlane = cms.bool(True),
    shadowingSwitch = cms.int32(0),
    sigmaInelNN = cms.double(58),
    
    PythiaParameters = cms.PSet(
            pythiaDefault = cms.vstring(
            'MSEL=0', 
            'CKIN(3)=7. ! min pt_hat', 
            'MSTJ(11)=3', 
            'MSTJ(22)=2',
            'MSTP(81)=0', 
            'MSTU(21)=1', 
            'PARJ(71)=10.', 
            'PARP(67)=1.', 
            'PARP(82)=1.9 ', 
            'PARP(85)=0.33', 
            'PARP(86)=0.66', 
            'PARP(89)=1000. !(D = 1800. GeV) reference energy scale, at which PARP(81) and PARP(82)
give the pTmin and pT0 values directly. Has no physical meaning in itself, but is used for convenience only.', 
            'PARP(91)=1.0', 
            'PARU(14)=1. !??????', 
            'PMAS(5,1)=4.8', 
            'PMAS(6,1)=175.0'
            ),
        pythiaBottomoniumNRQCD = cms.vstring(
            'MSUB(461) = 1', 
            'MSUB(462) = 1', 
            'MSUB(463) = 1', 
            'MSUB(464) = 1', 
            'MSUB(465) = 1', 
            'MSUB(466) = 1', 
            'MSUB(467) = 1', 
            'MSUB(468) = 1', 
            'MSUB(469) = 1', 
            'MSUB(470) = 1', 
            'MSUB(471) = 1', 
            'MSUB(472) = 1', 
            'MSUB(473) = 1', 
            'MSUB(474) = 1', 
            'MSUB(475) = 1', 
            'MSUB(476) = 1', 
            'MSUB(477) = 1', 
            'MSUB(478) = 1', 
            'MSUB(479) = 1'),
        pythiaCharmoniumNRQCD = cms.vstring(
            'MSUB(421) = 1', 
            'MSUB(422) = 1', 
            'MSUB(423) = 1', 
            'MSUB(424) = 1', 
            'MSUB(425) = 1', 
            'MSUB(426) = 1', 
            'MSUB(427) = 1', 
            'MSUB(428) = 1', 
            'MSUB(429) = 1', 
            'MSUB(430) = 1', 
            'MSUB(431) = 1', 
            'MSUB(432) = 1', 
            'MSUB(433) = 1', 
            'MSUB(434) = 1', 
            'MSUB(435) = 1', 
            'MSUB(436) = 1', 
            'MSUB(437) = 1', 
            'MSUB(438) = 1', 
            'MSUB(439) = 1'),
        pythiaQuarkoniaSettings = cms.vstring(
            'BRAT(861)=0.202    ! ',
            'BRAT(862)=0.798    ! ',
            'BRAT(1501)=0.013  ! ',
            'BRAT(1502)=0.987  ! ',
            'BRAT(1555)=0.356  ! ',
            'BRAT(1556)=0.644  ! ',
            'MSTP(145)=0           ! ',
            'MSTP(146)=0           ! ',
            'MSTP(147)=0           ! ',
            'MSTP(148)=1           !',
            'MSTP(149)=1           ! ',
            'PARP(141)=1.16       !',
            'PARP(142)=0.0119   !  ', 
            'PARP(143)=0.01       ! ', 
            'PARP(144)=0.01       !', 
            'PARP(145)=0.05       !', 
            'PARP(146)=9.28       !', 
            'PARP(147)=0.15       !', 
            'PARP(148)=0.02       !', 
            'PARP(149)=0.02       !', 
            'PARP(150)=0.085     !', 
            'PARJ(13)=0.60          ! ',
            'PARJ(14)=0.162        ! ',
            'PARJ(15)=0.018        ! ',
            'PARJ(16)=0.054        ! '
           ),
        pythiaWeakBosons = cms.vstring(
            'MSUB(1)=1               ! ff->gamma*/Z', 
            'MSUB(2)=1')             ! ff->W+-,
        pythiaJets = cms.vstring(
            'MSUB(11)=1', 
            'MSUB(12)=1', 
            'MSUB(13)=1', 
            'MSUB(28)=1', 
            'MSUB(53)=1', 
            'MSUB(68)=1'),
        pythiaPromptPhotons = cms.vstring(
            'MSUB(14)=1', 
            'MSUB(18)=1', 
            'MSUB(29)=1', 
            'MSUB(114)=1', 
            'MSUB(115)=1'),
        parameterSets = cms.vstring(
            'pythiaDefault', 
            'pythiaJets', 
            'pythiaPromptPhotons', 
            'pythiaWeakBosons', 
            'pythiaCharmoniumNRQCD', 
            'pythiaBottomoniumNRQCD', 
            'pythiaQuarkoniaSettings')
    )
)
 process.GlobalTag.globaltag = 'MC_3XY_V24::All'
process.generator = cms.EDFilter("HydjetGeneratorFilter",
    aBeamTarget = cms.double(208.0),
    allowEmptyEvents = cms.bool(False),
    bFixed = cms.double(0),
    bMax = cms.double(30),
    bMin = cms.double(0),
    cFlag = cms.int32(1),
    comEnergy = cms.double(2760.0),
    doCollisionalEnLoss = cms.bool(False),
    doRadiativeEnLoss = cms.bool(True),


    fracSoftMultiplicity = cms.double(1.0),
    hadronFreezoutTemperature = cms.double(0.14),
    hydjetMode = cms.string('kHydroQJets'),

    maxLongitudinalRapidity = cms.double(4.5),
    maxTransverseRapidity = cms.double(1.0),
    nMultiplicity = cms.int32(21500),
    numQuarkFlavor = cms.int32(0),

    qgpInitialTemperature = cms.double(1.0),
    qgpNumQuarkFlavor = cms.int32(0),
    qgpProperTimeFormation = cms.double(0.1),
    rotateEventPlane = cms.bool(True),
    shadowingSwitch = cms.int32(0), 
    sigmaInelNN = cms.double(58),
          
    PythiaParameters = cms.PSet(
        ppDefault = cms.vstring(
            'MSEL=1           ! QCD hight pT processes: MSUB[11->68] =1', 
            'CKIN(3)=6.       ! min pt_hat', 
            'MSTP(81)=0'),
        pythiaUESettings = cms.vstring(
            'MSTJ(11)=3     ! Choice of the fragmentation function', 
            'MSTJ(22)=2     ! Decay those unstable particles', 
            'MSTP(2)=1      ! which order running alphaS', 
            'MSTP(33)=0     ! no K factors in hard cross sections', 
            'MSTP(51)=10042 ! structure function chosen (external PDF CTEQ6L1)', 
            'MSTP(52)=2     ! work with LHAPDF', 
            'MSTP(81)=1     ! multiple parton interactions 1 is Pythia default', 
            'MSTP(82)=4     ! Defines the multi-parton model', 
            'MSTP(91)=1      !',
            'MSTU(21)=1     ! Check on possible errors during program execution', 
            'PARJ(71)=10 .  ! for which ctau  10 mm',
            'PARP(82)=1.8387   ! pt cutoff for multiparton interactions', 
            'PARP(89)=1960. ! sqrts for which PARP82 is set', 
            'PARP(83)=0.5   ! Multiple interactions: matter distrbn parameter', 
            'PARP(84)=0.4   ! Multiple interactions: matter distribution parameter', 
            'PARP(90)=0.16  ! Multiple interactions: rescaling power', 
            'PARP(67)=2.5    ! amount of initial-state radiation', 
            'PARP(85)=1.0  ! gluon prod. mechanism in MI', 
            'PARP(86)=1.0  ! gluon prod. mechanism in MI', 
            'PARP(62)=1.25   ! ', 
            'PARP(64)=0.2    ! ',           
            'PARP(91)=2.1   ! kt distribution', 
            'PARP(93)=15.0  ! '),
       
        pythiaPromptPhotons = cms.vstring(
            'MSUB(14)=1', 
            'MSUB(18)=1', 
            'MSUB(29)=1', 
            'MSUB(114)=1', 
            'MSUB(115)=1'),

        parameterSets = cms.vstring(
            'pythiaUESettings', 
            'ppDefault', 
            'pythiaPromptPhotons')
    )
)
So:
  • PYTHIA_ : jets, , difractive processes, lop_pT
  • HYDJET_4: jets, prompt photons,Z, W, charmonium, botomonium
  • HYDJET_2: jets, prompt photons

Tackle

HYDJET_4 vs HYDJET_2:

  • does charmonium/botomonium/quarkonia overlaps with 'jets' part?
      • pythia read: nope; processes 421->479, have the closed heavy prod in the NRQCD frame
  • make 4 data samples: same basic settings, and just different channels in;
    • (eliminate energy scaling, kinematic cuts differences, same channels): run PYTHIA & HYDJET @ 2760,4000GeV, same eta, pT_hat cut, PYTHIA settings.
      • Quarqonia+Boson:in vs out
      • Collisional En Loss: false vs true
    • generator settings
      • pythia settings for hydjet: pythiaDefault vs UESettings --- <0.6% effect
      • longitudinal rapidity (3.75-- 4.5) -- no effect
      • multiplicity (21500 -- 26000) -- 0.1% effect
  • can NOT reproduce the ~9mu/event ....
  • check changes in hydjet/pyquen code from 21X->3XY:
    • moved from old structure of the interface to the new one (should not have any impact)
    • change to hydjet 1.6 with CMSW_3_1_0_pre10 and up was made here. Igor's documentation of v1.6; no change that should affect (just a handle to decay wanted particles)
    • some changes in pyquen also here
    • digging into checks done for muons between CMSSW_229 and 310_pre7"Cath&Dongho
  • there is a counting issue in the Dongho's 4TeV plot!! the original presentation (for JPsi) is here; details in the Results/last_results

HYDJET vs PYTHIA*Ncoll/part scale diffrences

  • PYTHIA vs PYTHIA
    • official (jets, diffractive,low_pT) vs hydjet_setting (jets, photons, MSTP(81)=0) --> more muons when no multiple interactions (initial,final) OFF
    • official (jets, diffractive,low_pT) vs hydjet_setting (jets, photons but MSTP(81)=1) --> slightly more than previous case (0.031 vs 0.028); so main diffrence from the channels
  • HYDJET vsPYTHIA scaled (only with jets and photons in)
    • hydro off, quenching on nhsel = 4 (kQJetsOnly)
    • hydro off, quenching off nhsel = 3 (kJetsOnly)
  • HYDJET and PYTHIA simple deal differently with the hard event generation when a pt_hat is applied
    • HYDJET recalculates the number of hard scattering
    • PYTHIA does NOT recalculate the number of hard scattering
  • What does this mean?
    • if NO pt_hat cut, (0 to infinity), there will be generated:
      • in HYDJET n_hydjet hard scatterings
      • in pythia, n_pythia hard scatterings
    • if YES pt_hat cut, there will be generated
      • in HYDJET, [n_hydjet - n_hydjet_(found in the pt<pt_hat interval)] (so only what is above the cut in the (1), a subset)
      • in PYTHIA, still all n_pythia hard scatterings
  • What is the effect?
    • You get more hard_scattering_probes in PYTHIA case than in HYDJET (just because you have more hard scatterings)
  • How to do comparison properly?
    • when comparing the 2 one has to make a x-section correction: Nbcol*N_PYTHIA(pt>ptcut)* [sigjet/sigin]
      • sigin is the total inelastic NN cross section at given cms energy (=58mb, it is actually input to HYDJET in the hydjet configuration file)
      • sigjet is the hard scattering NN cross section at given pt min and energy (=10.5474mb for 4TeV and =6.69251 for 2.76TeV, both for a pT_hat>6GeV, as taken from printout from hyjpar)
    • These 2 are stored as output from HYDJET in
      COMMON /hyjpar/ ptmin,sigin,sigjet,nhsel,ishad,njet 

Results

Generator settings details

 pythiaQuarkoniaSettings = cms.vstring(
            'BRAT(861)=0.202    ! BR(D*_2+   --> D*0  pi+  pi0)',                                            
            'BRAT(862)=0.798    ! BR(D*_2+   --> D*+  pi+  pi-)', 
            'BRAT(1501)=0.013  ! BR(Xi*_bb- --> ubar  d  c specflav)', 
            'BRAT(1502)=0.987  ! BR(Xi*_bb- --> ubar  c  d specflav)', 
            'BRAT(1555)=0.356  ! BR(Omega*_bbc0 --> ubar  d c specflav)', 
            'BRAT(1556)=0.644  ! BR(Omega*_bbc0 --> ubar  c d specflav)',
            'MSTP(145)=0           ! (D = 0) polarization for NRQCD prod of charmonium or bottomonium ', 
            'MSTP(146)=0           ! (D = 1) polarization reference frame when MSTP(145) = 1.', 
            'MSTP(147)=0           ! (D = 0) particular helicity or density matrix component when MSTP(145)', 
            'MSTP(148)=1           ! (D = 0) possibility to allow final-state shower evolution of the cc[3S(8)1 ] and bb[3S(8)1 ] states produced in the NRQCD production of charmonium or bottomonium. Switching it on may exaggerate shower effects, since not all QQ[3S(8)1 ] comes from the fragmentation component where radiation is expected.', 
            'MSTP(149)=1           !  (D = 0) if the QQ[3S(8)1 ] states are allowed to radiate, MSTP(148) = 1, it determines the kinematics of the QQ[3S(8)1 ] --> QQ[3S(8)1 ] + g branching.', 
            'PARP(141)=1.16       ! (D = 10*1.) matrix elements for charmonium and bottomonium prod. in NRQCD. ', 
            'PARP(142)=0.0119   ! same ', 
            'PARP(143)=0.01       ! same', 
            'PARP(144)=0.01       ! same', 
            'PARP(145)=0.05       ! same', 
            'PARP(146)=9.28       ! same', 
            'PARP(147)=0.15       ! same', 
            'PARP(148)=0.02       ! same', 
            'PARP(149)=0.02       ! same', 
            'PARP(150)=0.085     ! same', 
            'PARJ(13)=0.60          ! (D = 0.75) probability that a charm or heavier meson has spin 1', 
            'PARJ(14)=0.162        ! (D = 0.) prob. that a spin = 0 meson is produced with an orbital ang. mom. 1, for a total spin = 1', 
            'PARJ(15)=0.018        ! (D = 0.) prob. that a spin = 1 meson is produced with an orbital ang. mom. 1, for a total spin = 0', 
            'PARJ(16)=0.054        ! (D = 0.) prob. that a spin = 1 meson is produced with an orbital ang. mom. 1, for a total spin = 1'
           ),
    )

  • MSEL = 1 : QCD high-pT processes (ISUB = 11, 12, 13, 28, 53, 68); additionally low-pT production if CKIN(3) < PARP(81) or PARP(82), depending on MSTP(82) (ISUB = 95). If low-pT is switched on, the other CKIN cuts are not used.
  • PARP(81): (D = 1.9 GeV) effective minimum transverse momentum pT_min for multiple interactions with MSTP(82) = 1, at the reference energy scale PARP(89), with the degree of energy rescaling given by PARP(90). The optimal value depends on a number of other assumptions, especially which parton distributions are being used. The default is intended for CTEQ 5L
  • PARP(82)=1.9 !(D = 2.0 GeV) regularization scale pT0 of the transverse-momentum spectrum for multiple interactions with MSTP(82)>=2
  • PARP(89): reference energy scale, at which PARP(81) and PARP(82) give the pT_min and pT_0 values directly. Has no physical meaning in itself, but is used for convenience only. (A form pT_min = PARP(81)EPARP(90)cm would have been equally possible but then with a less transparent meaning of PARP(81).) For studies of the pT_min dependence at some specific energy it may be convenient to choose PARP(89) equal to this energy.
  • PARP(90): (D = 0.16) power of the energy-rescaling term of the pTmin and pT0 parameters, which are assumed proportional to EPARP(90) cm . The default value is inspired by the rise of the total cross section by the pomeron term, s = E2cm = E20.08cm , which is not inconsistent with the small-x behaviour. It is also reasonably consistent with the energy-dependence implied by a comparison with the UA5 multiplicity distributions at 200 and 900 GeV [UA584]. PARP(90) = 0 is an allowed value, i.e. it is possible to have energy-independent parameters.
  • PARP(93) : (D = 5. GeV/c) (C) upper cut-off for primordial k? distribution inside hadron.
  • PARU(14): (D=2.) when passing string corners, the (mis)match of transverse momentum directions may need to be compensated by using momentum fractions x outside the allowed range 0 < x < 1, by having a slightly negative x. Occasionally the x can become quite negative, and then rarely give strange results. The new parameter sets limits how far outside the allowed range one may go before rejecting the current try and restarting the fragmentation of the current string.

Technical stuff

-- CameliaMironov - 30-Aug-2010

Topic attachments
I Attachment History Action Size DateSorted ascending Who Comment
PNGpng deraph_muons.png r1 manage 29.8 K 2010-08-30 - 09:34 CameliaMironov numbers_deraph
PDFpdf dilep_2sept2010_genmus.pdf r1 manage 210.3 K 2010-09-02 - 08:23 CameliaMironov preliminary results
PDFpdf dilep_8sept2010_genmus.pdf r1 manage 342.3 K 2010-09-08 - 17:01 CameliaMironov dilepMeeting_sep8_finalNumbers
Unknown file formatods hydjetMuons.ods r1 manage 13.5 K 2010-09-08 - 16:53 CameliaMironov genNumbers_differentSettings
Texttxt hydjet_4tevOriginal_cfi.py.txt r1 manage 7.5 K 2010-09-08 - 04:17 CameliaMironov original_4tev setting
Texttxt hydjet_4tevUEsettings_cfi.py.txt r1 manage 6.7 K 2010-09-08 - 04:18 CameliaMironov 276_hydjet settings
Texttxt hydjet_mbJPhQBin_cfi.py.txt r1 manage 9.1 K 2010-09-08 - 04:19 CameliaMironov 276_hydjet settings w/QB in
Texttxt hydjet_mbJPhin_cfi.py.txt r1 manage 4.6 K 2010-09-08 - 04:18 CameliaMironov 276_noQB
Edit | Attach | Watch | Print version | History: r12 < r11 < r10 < r9 < r8 | Backlinks | Raw View | Raw edit | More topic actions...
Topic revision: r11 - 2010-09-15 - CameliaMironov
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback