CURRENTLY OUTDATED, SEND A MAIL TO leonardo.sala at cern.ch IF YOU NEED INFORMATIONS

CMSSW Performance Toolkit

Introduction

This set of tools is intended to provide a standard way to retrieve and analyze performances related to CMSSW jobs and computational centres. CMSSW can provide lot of information, eg:

  • Timing and memory statistics
  • CPU specs
  • Storage relates statistics

These methods are described here:

The provided information can be large, and its handling difficult. This set of tools (let's call it CMSSW PerformanceToolkit, or CPT smile ) is available on CVS:

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/leo/Utilities/PerfToolkit/

and provides:

  • a standard set of CMSSW configuration files (PerfToolkit/TestBed)
  • a python script for retrieving interesting statistics from the job output, saving them as ROOT histograms (PerfToolkit/cpt_getJobInfo.py)
  • a python script for plotting the selected quantities and produce a twiki-compliant summary table (PerfToolkit/cpt_getStats.py)
  • a python script containing utilities used by cpt_getJobInfo.py and cpt_getStats.py (PerfToolkit/cpt_utilities.py)
  • A bunch of simple scripts for using CRAB (PerfToolkit/CrabUtils)

Current CPT release is: V01-00

Example config files

Some example cfg can be found here:

http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/UserCode/leo/Utilities/PerfToolkit/TestBed/

The important cfg parts are: * Enabling the timing Module

process.Timing = cms.Service("Timing",
                             useJobReport = cms.untracked.bool(True)
                             )

  • Enabling the CPU specs info (not yet supported by the plotting utility):
process.CPU = cms.Service("CPU",
                          useJobReport = cms.untracked.bool(True),
                          reportCPUProperties = cms.untracked.bool(True)
                          )

  • Enabling the Simple Memory checker (not yet supported by the plotting utility):
process.SimpleMemoryCheck = cms.Service("SimpleMemoryCheck",
                                        useJobReport = cms.untracked.bool(True)
                                        )

process.AdaptorConfig = cms.Service("AdaptorConfig",
                                    cacheHint=cms.untracked.string("application-only"),
                                    readHint=cms.untracked.string("auto-detect")
                                    )
process.source.cacheSize = cms.untracked.uint32(20*1024*1024)

Furthermore, a "drop *" option has been included in order not to be dependent on stageOut.

The cfg name schema is very simple:

<Jobtype>_<READHINT_cfg>_<CACHEHINT_cfg>_<CACHE>.py
. Two different jobtypes are given:

If you want to use this latter, you need to retrive the code from CVS.

The CACHEHINT parameter can be in the example cfgs:

  • APP: this refers to the "application-only" setting, and it means that ROOT will do the caching
  • LD: this refers to the "lazy-download" setting. In this case, the data will be downloaded to a shadow local file
  • STO: this refers to the "storage-only" setting, and means ROOT will drive the caching using a prefetch list, but will not allocate a cache of its own. Usable with file and RFIO technologies, will crash if used with dCache
  • AUTO: this refers to the "auto-detect" setting. This will select "lazy-download" forRFIO and dCache and "storage-only" for the remaining.

The READHINT parameter can be in the example cfgs:

  • UNBUFF: this refers to the "direct-unbuffered" setting, where all the caching is disabled
  • BUFF: this refers to the "read-ahead-buffered" setting, where buffering is used at the IO level
  • AUTO: this refers to the "auto-detect" setting, and requests optimum read-ahead buffering given the other I/O choices

CACHE indicates the amount of cache to be set: usually a value between 10 and 50 MB is suggested. For more details, please visit:

Getting job statistics

The cpt_getJobStats.py script retrieves the job statistics from the job stdout and the FrameworkJobReport xml file. Two kinds of jobs are actually supported:

  • Plain CMSSW jobs (e.g. simply run on a shell)
  • CMSSW jobs sent with CRAB

In both cases, getJobStats gets the timing information from the stdout, and the storage stats from the FJR. For the CPU time information, this is retrieved from the stdout in both cases, but when running a CMSSW job not using crab /usr/bin/time must be used, eg:

( /usr/bin/time cmsRun -j myCMSSW_TEST/test_1.xml PAT1.py ) &> myCMSSW_TEST/test_1.stdout 

The usage syntax is:

cpt_getJobInfo.py --type=CMSSW|CRAB DIR [outfile.root]

  • the --type options tells the program how the output is formatted. By default is set to CRAB
  • DIR is the directory which contains the relevant output files:
    • for CRAB, it is simply the CRAB working dir, eg crab_0_100114_102558
    • for CMSSW, is the directory which contains the stdout and the xml files. CAVEAT: they must have the same name and be numerated, e.g.:
      $ ls myCMSSW/
      cmsrun_1.stdout  cmsrun_1.xml  cmsrun_2.stdout  cmsrun_2.xml  cmsrun_3.stdout  cmsrun_3.xml  cmsrun_4.stdout  cmsrun_4.xml
  • outfile.root is the name of the output root file containing the histos. By default, it is DIR.root

ROOT file format

The ROOT file produced by cpt_getJobInfo.py contains histograms with the information gathered from CMSSW. Histograms names are formatted in a way to be simple identifiable by the plotting script (and by humans, too). The structure is:

QUANT<quantName>-SAMPLE<sampleName>

where is the variable registered in the CMSSW statistics (e.g. tstoragefile-read-total-msecs ) and is the name of the sample analyzed (if the output file is OUT.root, then the sample name will be OUT).

Histogram binning is hardcoded in the setBinEdges() function, and have been tuned to cover all the information retrieved with best resolution. The rebinning and the optimization is delegated to the cpt_getStats.py script.

How does it work

Analyzing job statistics

Once one or more root files have been produced with cpt_getJobInfo.py, they can be user as input for cpt_getStats.py. This script computes statistics from the Root histos, plot the selected histos and produce a twiki formatted table.

The syntax is:

cpt_getStats.py [--save-png] [-h] [--no-auto-bin] [--binwidth-time=BINWIDTHTIME] output.root [output_2.root, ...]

where output.root is the file produced by cpt_getJobInfo.py. Wildcards are supported, so if you have e.g. files called test1.root, test2.root, test3.root you can do:

cpt_getStats.py test*.root

Options are explained calling cpt_getStats.py -h:

Options:
  --version             show program's version number and exit
  -h, --help            show this help message and exit
  --save-png            Saves created histos in png format
  --no-auto-bin         Automatic histo binning
  --binwidth-time=BINWIDTHTIME   Bin width of time histos in seconds (default 30, min 10)

At the moment of writing, the script can support a specific schema for root files naming: SITE-CFG-DATASET-NEVTS-LABEL-DATE.root. This allows a more user friendly labelling in histogram's legends: if the file name is not compliant, then it will be used directly as label in the legend (e.g. if the file is called test.root, in the legend will appear as "test").

The script can be configured in order to plot only some variables. The configurations are stored in sequences in the file header:

  • filter : this filters the quantities to be analyzed. It accepts regular expression, e.g.:
filter = [
    ".*read.*[^(max|min)].*",
    "Time",
    "Percentage",
    "User",
    "Error"
]
selects all the read(v) statistics (but min and max values) and all quantities which contains Time (at the beginning), Percentage, User and Error.

  • plotFilter: selects the quantities to be actually plotted, e.g.:
plotFilter = [  
   "readv-total-msecs",
   "read-total-msecs",
   "TimeEvent",
   "Percentage",
   "UserTime",
   "WrapperTime"
   ]
In this case, only quantities containing one of the selected words will be plotted. It does support regular expressions.

  • plotTogether: this is a list of tstorage statistics to be plotted together (tstoragefile values excluded). This in order to have quantities coming from different SE technologies (dcap, file, ...) plotted overlapped. Better not to touch it.

  • summaryPlots: this selects the plots to be inserted in a unique canvas. Useful to have a grand view at once. E.g.:
summaryPlots =  (
"CpuPercentage",
"UserTime",
"ExeTime",
"tstoragefile-read-total-msecs"
)
will plot a canvas divided into 4 pieces, each with one of the selected plots.

  • legendComposition: the labels to use in legends (histos and tables). Supported labels are: Site, Cfg, Dataset, EventsJob, Label, Date, Hour, e.g.:
legendComposition = ["Site","Cfg","Label"] 
will use as labels the used site, the cfg name and the Label

How does it work

Using CPT with simple CMSSW jobs: An Example

In this case, I ran 10 jobs (100 evts each) both with PAT.py and PAT1_RHAUTO_CHAPP_CACHE20.py, using a simple shell loop:

# for i in `seq 1 10`; do ( /usr/bin/time cmsRun -j CMSSW_PAT1/test_$i.xml PAT1.py ) &> CMSSW_PAT1/test_$i.stdout; done
# for i in `seq 1 10`; do ( /usr/bin/time cmsRun -j CMSSW_PAT1_RHAUTO_CHAPP_CACHE20/test_$i.xml  PAT1_RHAUTO_CHAPP_CACHE20.py) &> CMSSW_PAT1_RHAUTO_CHAPP_CACHE20/test_$i.stdout; done

NB: please notice the names of stdout and xml files (test_X.stdout and test_X.xml).

The files produced and stored in the CMSSW_PAT1 and CMSSW_PAT1_RHAUTO_CHAPP_CACHE20 are the base for getting the statistics. Get the scripts from the CVS:

# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_getJobInfo.py
# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_getStats.py
# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_utilities.py

First of all, produce the root files:

# python PerfToolkit/cpt_getJobInfo.py --type=CMSSW CMSSW_PAT1
OutFile: CMSSW_PAT1.root
Analyzing CMSSW_PAT1

# python PerfToolkit/cpt_getJobInfo.py --type=CMSSW CMSSW_PAT1_RHAUTO_CHAPP_CACHE20
OutFile: CMSSW_PAT1_RHAUTO_CHAPP_CACHE20.root
Analyzing CMSSW_PAT1_RHAUTO_CHAPP_CACHE20

NB If you are using it as a simple executable (./cpt_getJobInfo.py) it would fail on a CMSSW area (e.g. after cmsenv being used), because the scripts call the system python version.

Then, we are ready for producing tables and plots:

# python PerfToolkit/cpt_getStats.py --save-png CMSSW*.root

The results are shown below:

  CMSSW_PAT1 CMSSW_PAT1_RHAUTO_CHAPP_CACHE20
Success 100.0% (10 / 10) 100.0% (10 / 10)
ExeTime 61.59 +- 1.69 60.31 +- 1.81
MinEventTime 0.10 +- 0.01 0.08 +- 0.00
UserTime 53.96 +- 0.24 53.75 +- 0.18
CpuPercentage 91.60 +- 1.96 93.10 +- 1.70
AvgEventTime 3.02 +- 0.04 2.96 +- 0.12
MaxEventTime 27.30 +- 0.23 26.39 +- 0.57
TotalJobTime 30.22 +- 0.37 29.64 +- 1.17
SysTime 2.67 +- 0.19 2.61 +- 0.51
READ
tstoragefile-read-actual-total-megabytes 3.49 +- 0.00 2.57 +- 0.00
tstoragefile-read-async-total-megabytes // 0.00 +- 0.00
tstoragefile-read-total-megabytes 3.49 +- 0.00 3.49 +- 0.00
dcap-read-total-megabytes 3.49 +- 0.00 2.57 +- 0.00
file-read-total-megabytes 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-via-cache-total-megabytes // 0.92 +- 0.00
tstoragefile-read-actual-total-msecs 1953.94 +- 344.83 473.26 +- 748.09
tstoragefile-read-async-total-msecs // 0.00 +- 0.00
tstoragefile-read-total-msecs 1954.58 +- 344.83 477.75 +- 748.10
dcap-read-total-msecs 1953.24 +- 344.84 473.17 +- 748.09
file-read-total-msecs 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-via-cache-total-msecs // 3.79 +- 0.03
tstoragefile-read-actual-num-operations 306.00 +- 0.00 30.00 +- 0.00
tstoragefile-read-actual-num-successful-operations 306.00 +- 0.00 30.00 +- 0.00
tstoragefile-read-async-num-operations // 1.00 +- 0.00
tstoragefile-read-async-num-successful-operations // 0.00 +- 0.00
tstoragefile-read-num-operations 306.00 +- 0.00 306.00 +- 0.00
dcap-read-num-operations 306.00 +- 0.00 30.00 +- 0.00
file-read-num-operations 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-num-successful-operations 306.00 +- 0.00 306.00 +- 0.00
dcap-read-num-successful-operations 306.00 +- 0.00 30.00 +- 0.00
file-read-num-successful-operations 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-via-cache-num-operations // 277.00 +- 0.00
tstoragefile-read-via-cache-num-successful-operations // 276.00 +- 0.00
READV
tstoragefile-readv-actual-total-megabytes // 20.70 +- 0.00
dcap-readv-total-megabytes 0.00 +- 0.00 20.70 +- 0.00
file-readv-total-megabytes 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-readv-actual-total-msecs // 1059.14 +- 472.79
dcap-readv-total-msecs 0.00 +- 0.00 1059.13 +- 472.79
file-readv-total-msecs 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-readv-actual-num-operations // 1.00 +- 0.00
tstoragefile-readv-actual-num-successful-operations // 1.00 +- 0.00
dcap-readv-num-operations 0.00 +- 0.00 1.00 +- 0.00
file-readv-num-operations 0.00 +- 0.00 0.00 +- 0.00
dcap-readv-num-successful-operations 0.00 +- 0.00 1.00 +- 0.00
file-readv-num-successful-operations 0.00 +- 0.00 0.00 +- 0.00

  • Performance Overview. NB In this case the time spent by reading the file is too short (<10 secs): this means that only the 0th bin is filled, and the script does not plot these kinds of histos. <br /> CMSSW_PAT1-Overview.png

  • Cpu Percentage Event by event:
    CMSSW_PAT1-TimeEvent_cpuPercentage.png

  • Cpu Time Event by event:
    CMSSW_PAT1-TimeEvent_cpuSecs.png

  • Time used by eleIsoDepositTk-CandIsoDepositProducer module (the first called by PAT) Event by event:
    CMSSW_PAT1-TimeEvent_eleIsoDepositTk-CandIsoDepositProducer_secs.png

  • Wall Time Event by event:
    CMSSW_PAT1-TimeEvent_secs.png

All the workflow: site performance example

In this use case, we want to submit the same job(s) to different sites, in order to evaluate their performances. This example will use PAT and CRAB.

Job Submission

Go to a CMSSW area, eg CMSSW_3_3_2, and download the TestBed directory:

# cd CMSSW_3_3_2/src
# cvs co -d TestBed UserCode/leo/Utilities/PerfToolkit/TestBed
# cd TestBed

In this directory the example cfgs are available. Also, there is a crab.template file which will ease the submission of the jobs. In this files there are the placeholders which can be substituted through sed. A python script which does this work is given in PerfToolkit/CrabUtils:

# cvs co -d CrabUtils UserCode/leo/Utilities/PerfToolkit/CrabUtils

The script is named crab_LaunchIOTestJobs.py, and its usage is:

crab_LaunchIOTestJobs.py SITE LABEL CFG EVENTSJOB DATASET

In order to have the script properly working, you should source the LCG, CMSSW and CRAB environment:

source /afs/cern.ch/cms/LCG/LCG-2/UI/cms_ui_env.sh
cmsenv
source /afs/cern.ch/cms/ccs/wm/scripts/Crab/crab.sh

For example, to submit to CSCS the PAT.py cfg with 10000 evts/job on the /QCD_Pt80/Summer09-MC_31X_V3_AODSIM-v1/AODSIM dataset:

crab_LaunchIOTestJobs.py CSCS CMSSW_3_3_2 PAT1.py 10000 /QCD_Pt80/Summer09-MC_31X_V3_AODSIM-v1/AODSIM
where I've chosen to use CMSSW_3_3_2 as label. This will produce a CRAB working dir like CSCS-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001042356, which is compliat with the labelling rules described above. If you create a text file with the site names in it, then you can submit to all the sites in a glance:
for i in `cat sites.txt`; do crab_LaunchIOTestJobs.py $i CMSSW_3_3_2 PAT1.py 10000 /QCD_Pt80/Summer09-MC_31X_V3_AODSIM-v1/AODSIM; done
NB: crab_LaunchIOTestJobs.py will create jobs for all the events in the specified dataset and that only the first 20 (this number can be changed in the script) will be submitted

In order to quickly check the status, retrieve the output and kill jobs you can use the other utilities contained in CrabUtils:

  • crabStatus.sh LABEL
  • crabGetoutput.sh LABEL
  • crabKill.sh LABEL

LABEL is a part of CRAB working dirs you're interested in, in this case can be QCD, Summer09, etc... e.g.:

crabStatus.sh QCD
   CSCS-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141613/
        List of jobs Created: 21-220
        List of jobs Ready: 1-20
   KNU-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141622/
        List of jobs Created: 21-220
        List of jobs Ready: 1-20

Analyzing statistics

Now that we have our CRAB directories, we only need to do:

  1. Get the scripts from CVS:
# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_getJobInfo.py
# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_getStats.py
# cvs co -r %CPT_VERSION% -d PerfToolkit UserCode/leo/Utilities/PerfToolkit/cpt_utilities.py

# python PerfToolkit/cpt_getJobInfo.py CSCS-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141613
OutFile: CSCS-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141613.root
Analyzing CSCS-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141613

# python PerfToolkit/cpt_getJobInfo.py KNU-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141622/
OutFile: KNU-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141622.root
Analyzing KNU-PAT1-QCD_Pt80+Summer09.MC_31X_V3_AODSIM.v1+AODSIM-10000-CMSSW_3_3_2-201001141622/

Then, we are ready to produce histos and tables:

# python PerfToolkit/cpt_getStats.py --save-png *20100114*.root

which produces this table and these graphs (table has been just cut and pasted from the stdout).

  CSCS PAT1 CMSSW_3_3_2 KNU PAT1 CMSSW_3_3_2
Success 100.0% (20 / 20) 100.0% (20 / 20)
WrapperTime 4720.45 +- 254.19 3285.55 +- 654.12
ExeTime 4709.25 +- 253.92 3274.65 +- 653.02
MinEventTime 0.07 +- 0.01 0.07 +- 0.02
UserTime 2664.38 +- 119.62 2580.32 +- 390.90
CpuPercentage 57.45 +- 2.54 81.50 +- 9.11
User_ReadkBEvt 89.96 +- 0.26 89.96 +- 0.26
AvgEventTime 0.47 +- 0.03 0.32 +- 0.06
MaxEventTime 28.51 +- 4.88 32.26 +- 7.05
TotalJobTime 4660.38 +- 254.32 3227.93 +- 647.26
StageoutTime -1.00 +- 0.00 -1.00 +- 0.00
SysTime 67.22 +- 7.50 71.97 +- 11.04
READ
tstoragefile-read-actual-total-megabytes 878.52 +- 2.59 878.52 +- 2.59
tstoragefile-read-total-megabytes 878.52 +- 2.59 878.52 +- 2.59
dcap-read-total-megabytes 878.52 +- 2.59 878.52 +- 2.59
file-read-total-megabytes 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-actual-total-msecs 1982040.00 +- 188744.51 641224.70 +- 412932.27
tstoragefile-read-total-msecs 1982305.00 +- 188750.95 641683.15 +- 412922.38
dcap-read-total-msecs 1981720.00 +- 188733.85 640731.05 +- 412930.85
file-read-total-msecs 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-actual-num-operations 134683.15 +- 311.18 134683.15 +- 311.18
tstoragefile-read-actual-num-successful-operations 134683.15 +- 311.18 134683.15 +- 311.18
tstoragefile-read-num-operations 134683.15 +- 311.18 134683.15 +- 311.18
dcap-read-num-operations 134683.15 +- 311.18 134683.15 +- 311.18
file-read-num-operations 0.00 +- 0.00 0.00 +- 0.00
tstoragefile-read-num-successful-operations 134683.15 +- 311.18 134683.15 +- 311.18
dcap-read-num-successful-operations 134683.15 +- 311.18 134683.15 +- 311.18
file-read-num-successful-operations 0.00 +- 0.00 0.00 +- 0.00
READV
dcap-readv-total-megabytes 0.00 +- 0.00 0.00 +- 0.00
file-readv-total-megabytes 0.00 +- 0.00 0.00 +- 0.00
dcap-readv-total-msecs 0.00 +- 0.00 0.00 +- 0.00
file-readv-total-msecs 0.00 +- 0.00 0.00 +- 0.00
dcap-readv-num-operations 0.00 +- 0.00 0.00 +- 0.00
file-readv-num-operations 0.00 +- 0.00 0.00 +- 0.00
dcap-readv-num-successful-operations 0.00 +- 0.00 0.00 +- 0.00
file-readv-num-successful-operations 0.00 +- 0.00 0.00 +- 0.00

  • CSCS-PAT1-QCD_Pt80Summer09-Overview.png:
    CSCS-PAT1-QCD_Pt80Summer09-Overview.png

  • CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_cpuPercentage.png:
    CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_cpuPercentage.png

  • CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_cpuSecs.png:
    CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_cpuSecs.png

  • CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_eleIsoDepositTk-CandIsoDepositProducer_secs.png:
    CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_eleIsoDepositTk-CandIsoDepositProducer_secs.png

  • CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_secs.png:
    CSCS-PAT1-QCD_Pt80Summer09-TimeEvent_secs.png

If we want a coarser time binning:

# python PerfToolkit/cpt_getStats.py --binwidth-time=120 --save-png *20100114*.root

  • coarser_CSCS-PAT1-QCD_Pt80Summer09-Overview.png:
    coarser_CSCS-PAT1-QCD_Pt80Summer09-Overview.png

-- LeonardoSala - 14-Jan-2010

  • Set CPT_VERSION = V01-00

Edit | Attach | Watch | Print version | History: r7 < r6 < r5 < r4 < r3 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r7 - 2010-06-17 - unknown
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback