Introduction

The particle content of the MSSM is able to describe most aspects of possible BSM physics regardless the exact nature of the underlying theory.
Special SUSY-breaking models cover only part of the possible phenomenology.
This page collects information on ATLAS samples for a mode-independent investigation of RPC SUSY signatures.

Definitions

Model independence: No a-priori restrictions of the masses and couplings of new particles.
Decay Mode: The combination of two decay chains.
Topological Models: Many aspects of SUSY mass spectra can be approximated by simplified models (a set of decay modes) with just a few parameters.
Topological Sets: Combination of all production and decay modes of a new particle.
Eigenmodes: A special kind of topological models. They are the largest sub-topologies who's reconstruction efficiency can be measured independently of sparticle couplings just in terms of the masses. As a result, they can be used as a basis to reconstruct the SUSY mass spectrum at any specific SUSY model point. (And the efficiency is the linear combination of the eigenmode efficiencies and the mode-dependent branching ratios.)

Overview of SUSY Eigenmodes

modesOverview.png

Direct mode: Two strongly interacting sparticles are produced (squarks or gluinos), both of which decay directly to the LSP. The final state is jets + missing energy.
Boson mode: One of the produced sparticles first goes to a heavier gaugino (i.e. the chi2 might be a chargino or neutralino), which then decays to the LSP and a standard model boson (mainly Z, W or Higgs). The other produced sparticle goes directly to the LSP.
Lepton mode: The long decay chain proceeds via the chi2 and a slepton (smuon, selectron, stau or sneutrino). The other produced sparticle goes directly to the LSP. In consequence the final state might contain either 0,1 or 2 charged leptons.

The different subclasses are generated separately.

Mass Configurations

Step 1: Corners of Efficiency Space

The following points map out the extreme mass configurations. They are likely not present at typical mSUGRA points, they allow us to determine how much our efficiency varies and they constitute a framework for additional points.

Direct mode mass configurations

directModeMassconfigurations.png

Boson mode mass configurations

bosonModeMassconfigurations.png
(For small mass splittings the boson may be virtual)

Lepton mode mass configurations

leptonModeMassconfigurations.png

Step 2: Additional intermediate mass points

For a detailed investigation of the efficiency space smaller mass steps are necessary. Points should be closer together were mass differences are small and efficiencies change fast. Regions with large mass splittings need fewer points.

Longer Symmetric Modes

All modes were neither of the two produced sparticles goes directly to the LSP, but both decay chains are bosonic or leptonic.

Double-Boson Modes

Double Lepton Modes

Mixed Boson-Lepton Modes

Special Configurations

ATLAS Samples

Mode Production Emitted Particles Mass Point Dataset # Events
Direct GluinoGluino - mGluino800_mNeutralino750 10xxxx 5K
Direct GluinoGluino - mGluino800_mNeutralino100 10xxxx 5K
Direct GluinoGluino - mGluino150_mNeutralino100 10xxxx 5K
Boson GluinoGluino Z mGluino800_mNeutralino750_mNeutralino700 10xxxx 5K
Boson GluinoGluino Z mGluino800_mNeutralino750_mNeutralino100 10xxxx 5K
Boson GluinoGluino Z mGluino800_mNeutralino150_mNeutralino100 10xxxx 5K
Boson GluinoGluino Z mGluino200_mNeutralino150_mNeutralino100 10xxxx 5K
Boson GluinoGluino W mGluino800_mChargino750_mNeutralino700 10xxxx 5K
Boson GluinoGluino W mGluino800_mChargino750_mNeutralino100 10xxxx 5K
Boson GluinoGluino W mGluino800_mChargino150_mNeutralino100 10xxxx 5K
Boson GluinoGluino W mGluino200_mChargino150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 muons mGluino800_mNeutralino750_mSMuon700_mNeutralino650 10xxxx 5K
Slepton GluinoGluino 2 muons mGluino800_mNeutralino750_mSMuon700_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 muons mGluino800_mNeutralino750_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 muons mGluino800_mNeutralino200_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 muons mGluino250_mNeutralino200_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 muon, 1 neutrino mGluino800_mChargino750_mSMuon700_mNeutralino650 10xxxx 5K
Slepton GluinoGluino 1 muon, 1 neutrino mGluino800_mChargino750_mSMuon700_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 muon, 1 neutrino mGluino800_mChargino750_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 muon, 1 neutrino mGluino800_mChargino200_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 muon, 1 neutrino mGluino250_mChargino200_mSMuon150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 electrons mGluino800_mNeutralino750_mSElectron700_mNeutralino650 10xxxx 5K
Slepton GluinoGluino 2 electrons mGluino800_mNeutralino750_mSElectron700_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 electrons mGluino800_mNeutralino750_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 electrons mGluino800_mNeutralino200_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 electrons mGluino250_mNeutralino200_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 electron, 1 neutrino mGluino800_mChargino750_mSElectron700_mNeutralino650 10xxxx 5K
Slepton GluinoGluino 1 electron, 1 neutrino mGluino800_mChargino750_mSElectron700_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 electron, 1 neutrino mGluino800_mChargino750_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 electron, 1 neutrino mGluino800_mChargino200_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 1 electron, 1 neutrino mGluino250_mChargino200_mSElectron150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 neutrinos mGluino800_mNeutralino750_mSNeutrino700_mNeutralino650 10xxxx 5K
Slepton GluinoGluino 2 neutrinos mGluino800_mNeutralino750_mSNeutrino700_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 neutrinos mGluino800_mNeutralino750_mSNeutrino150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 neutrinos mGluino800_mNeutralino200_mSNeutrino150_mNeutralino100 10xxxx 5K
Slepton GluinoGluino 2 neutrinos mGluino250_mNeutralino200_mSNeutrino150_mNeutralino100 10xxxx 5K

References

Simplified Models for a First Characterization of New Physics at the LHC
A Bottom-Up Approach to SUSY Analyses


Major updates:
-- ClausHorn - 16-Apr-2010
Edit | Attach | Watch | Print version | History: r14 < r13 < r12 < r11 < r10 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r14 - 2010-06-24 - ClausHorn
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Main All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2019 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback