\[{\int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}}\]

 \begin{displaymath} \begin{array}{lr}    \mu_1 = 0 & (3a) \\    \mu_2  = -\mu'_1{}^2 + \mu'_2 & (3b)  \\    \mu_3  = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 & (3c)  \\    \mu_4  = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 &(3d) \end{array} \end{displaymath}

Examples

The following will only display correctly if this plugin is installed and configured correctly.
<latex title="this is an example">
  \int_{-\infty}^\infty e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}
</latex>

<latex>
  {\cal P} & = & \{f_1, f_2, \ldots, f_m\} \\
  {\cal C} & = & \{c_1, c_2, \ldots, c_m\} \\
  {\cal N} & = & \{n_1, n_2, \ldots, n_m\}
</latex>

<latex title="Calligraphics" color="orange">
  \cal
  A, B, C, D, E, F, G, H, I, J, K, L, M, \\
  \cal
  N, O, P, Q, R, S, T, U, V, W, X, Y, Z
</latex>

<latex>
  \sum_{i_1, i_2, \ldots, i_n} \pi * i + \sigma
</latex>

This is new inline test.

Greek letters
\alpha \theta
\beta \iota
\gamma \kappa
\delta \lambda
\epsilon \mu
\zeta \nu
\eta \xi

-- PeterJones - 05-Jan-2010

Edit | Attach | Watch | Print version | History: r5 < r4 < r3 < r2 < r1 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r5 - 2020-08-30 - TWikiAdminUser
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Sandbox/SandboxArchive All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2023 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback