Bayes Rule

$P(A|B) = {{P(B|A)P(A)} \over {P(B)}}$

B P(B|A) P(B|A) P(A) P(B)
Posterior Likelyhood Prior I Likelyhood

B is like evidence and A is causes.

B is usualy calculated by total probability formula: $P(B) = \sum_{a}^{} P(B|A=a) P(A=a)$

Bayes Network

Three parameters:

  • P(A)
  • P(B|A)
  • P(B,!A).

\[ P(\overline{A}|B) =  {{P(B|\overline{A})P(\overline{A})} \over {P(B)}}\]

P(B) — nominator

\[    P^{'}(A|B) = P(B|A) P(A)    P^{'}(\overline{A}|B) = P(B|\overline{A}) P(\overline{A})   \]

-- SashaMazurov - 25-Oct-2011

Edit | Attach | Watch | Print version | History: r2 < r1 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r2 - 2020-08-19 - TWikiAdminUser
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Sandbox/SandboxArchive All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2023 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback