Test of Latex plugin

This page contains a couple of tests of the Latex plugin on SLC5.

Example

The singular value decomposition of a matrix $A$ is defined as

  \begin{displaymath} A = U \Sigma V^H \end{displaymath} (1)

where $U$ and $V$ are both matrices with orthonormal columns, $\{\cdot\}^H$ indicates a complex-conjugate transpose, and $\Sigma$ is a diagonal matrix with singular values

\[ \sigma_1 > \sigma_2 > \cdots > \sigma_n \geq 0 \]
along the main diagonal. Eq. (1) is just one of the many matrix decompositions that exists for matrix $A$.

Another example

  • Debug output
    • Set DEBUG = 1 Let's see if this helps

  \fbox{    \begin{tikzpicture}[auto,bend right]      \node (a) at (0:1) {$0^\circ$};      \node (b) at (120:1) {$120^\circ$};      \node (c) at (240:1) {$240^\circ$};      \draw (a) to node {1} node [swap] {1'} (b)            (b) to node {2} node [swap] {2'} (c)            (c) to node {3} node [swap] {3'} (a);    \end{tikzpicture}  }

A user example

Test, let's see if dvipng 1.9 fixes this

 \begin{equation*} \vert x \vert = \left\{ \begin{array}{rl} -x &amp; \text{if } \quad x < 0\\ 0 &amp; \text{if } \quad x = 0\\ x &amp; \text{if } \quad x  > 0 \end{array} \right. \end{equation*}

In particular:

    \mu_1 = 0 \qquad\qquad\qquad\qquad (3a) \\    \mu_2 = -\mu'_1{}^2 + \mu'_2 \qquad\qquad\qquad (3b) \\    \mu_3 = 2 \mu'_1{}^3 - 3 \mu'_1 \mu'_2 + \mu'_3 \qquad\qquad (3c) \\    \mu_4 = -3 \mu'_1{}^4 + 6 \mu'_1{}^2 \mu'_2 - 4 \mu'_1 \mu'_3 + \mu'_4 \qquad (3d)

-- NilsHoeimyr - 15-Dec-2009
Latex rendering error!! dvi file was not created.

Edit | Attach | Watch | Print version | History: r6 < r5 < r4 < r3 < r2 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r6 - 2020-08-19 - TWikiAdminUser
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Sandbox/SandboxArchive All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2023 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback