\begin{equation} 	 \int_{-\infty}^{+\infty} f(x) {\mathrm d}x   \nonumber   \end{equation}

   \begin{eqnarray}     f_{\mu\mu}(m) & = &  N_{\mu\mu} f_{peak}(m) \\     f_{\mu s}(m) & = &  N_{\mu s} f_{peak}^{s}(m) + b_{\mu s}(m) \\     f_{\mu t}(m) & = &  N_{\mu t} f_{peak}(m) + b_{\mu s}(m) \\     f_{\mu\mu}^{non iso}(m) & = &   N_{\mu\mu}^{non iso} f_{peak}(m) + b_{\mu\mu}^{non iso}(m) \\   \end{eqnarray}

     \begin{eqnarray} 	 N_{\mu\mu} & = & N_{Z\rightarrow\mu^+\mu^-} \epsilon_{iso}^2 \epsilon_{trk}^2 \epsilon_{sa}^2  \\ 	 N_{\mu s} & = & 2 N_{Z\rightarrow\mu^+\mu^-} \epsilon_{iso}^2 (1 -\epsilon_{trk}) \epsilon_{sa}^2  \\ 	 N_{\mu t} & = & 2 N_{Z\rightarrow\mu^+\mu^-} \epsilon_{iso}^2 \epsilon_{trk}^2 (1 -\epsilon_{sa}) \\          N_{\mu\mu}^{non iso} & = & N_{Z\rightarrow\mu^+\mu^-} (1 - \epsilon_{iso}^2)  \epsilon_{trk}^2 \epsilon_{sa}^2    \end{eqnarray}

     \begin{eqnarray}      f_{peak}(m) & = & \frac{C}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{+\infty} BW(m^\prime; M, \Gamma)\,\, e^{-\lambda m^\prime} e^{-\frac{(m - m^\prime)^2}{2 \sigma^2} }{\mathrm d}m^\prime \\      f_{peak}^{s}(m) & = & \frac{1}{\sqrt{2\pi\sigma_s^2}} e^{-\frac{(m - M)^2}{2 \sigma_s^2} } \\     b_{\mu t}(m) & = & N^b_{\mu t} (1 + a_1 m + a_2 m^2) e^{-\alpha m} \\     b_{\mu\mu}^{non iso}(m) & = & N^b_{\mu\mu}^{non iso} (1 + b_1 m) e^{-\beta m} \\     b_{\mu s}(m) & = & N^b_{\mu s} e^{-\gamma m}   \end{eqnarray}

-- LucaLista - 18 Jun 2008
Latex rendering error!! dvi file was not created.

Edit | Attach | Watch | Print version | History: r3 < r2 < r1 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r3 - 2013-06-26 - PeterJones
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Sandbox All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright & 2008-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback