Test Beam Facility For hIgh Rate STudies (TB.First) @IPHC

This page contains instructions and illustrations on how to run the test beam facility at Strasbourg. The page is under construction and for the moment contain only relevant information for the test of a tracker phase 2 2S mini module (2CBC3). FIXME add documentation about CBC2/3 calibration

Contacts

A quick set of useful contacts in the table below:

Caroline Collard 03.88.10.66.22 caroline.collard@cernNOSPAMPLEASE.ch
Clément Grimault 03.88.10.66.49 clement.grimault@iphcNOSPAMPLEASE.cnrs.fr
Ulrich Goerlach 03.88.10.66.44 ulrich.goerlach@iphcNOSPAMPLEASE.cnrs.fr
Jeremy Andrea +41 75 411 1805 jandrea@cernNOSPAMPLEASE.ch
CYRCé local phone (fix) +33 388106566  
bat 30 03.88.10.67.72  
FIXME add more contacts from CYRCé

Description of the current setup, installation

ping 192.168.7.230 // ping FC7 ping 192.168.7.221 // ping GLib

Test of the Phase-1 CMS Pixel modules with DTB

Prerequisites

  • Git
  • C++ compiler
  • CMake
  • FTD2XX / FTDI library :
for libftdi -> "yum install libftdi-devel.x86_64" for libftd2xx -> download : https://www.ftdichip.com/Drivers/D2XX/Linux/libftd2xx-x86_64-1.4.8.gz tar -xvf libftd2xx-x86_64-1.4.8.gz cd release/build/; cp libftd2xx.* /usr/local/lib/ ; chmod 0755 /usr/local/lib/libftd2xx.so.1.4.8 ; ln -sf /usr/local/lib/libftd2xx.so.1.4.8 /usr/local/lib/libftd2xx.so ;

cp release/WinType.h /usr/local/include/. ; cp release/ftd2xx.f /usr/local/include/. ;

Pxar installation

Link to the documentation link

git clone https://github.com/psi46/pxar.git -b master git clone https://github.com/psi46/pixel-dtb-firmware.git -b master

Preparation of pixel module

Setup of the environment : make sure root is sourced. Then to allow the usb port to be accessible (under linux) :

 sudo mount --bind /dev/bus /proc/bus ; 
sudo ln -s /sys/kernel/debug/usb/devices /proc/bus/usb/devices ; 
sudo chmod 666 /proc/bus/usb/00*/* ;
sudo modprobe -r ftdi_sio ;

First to test the programmability of the module :

FIXME add link to the github branch, create the git branch:

https://github.com/clgrimault/pxar/tree/iphc

Information on the pixel module

Pixel Number Hub address Comments Test results

M3028 25 L3 from Nikkie 1 dead ROC if no HV
M3211 31 L3 from Danek ...
M3558 29 L3 from Danek ...
M3672 30 L3 from Nikkie ...
M3704 4 L3 from Nikkie ...
M4643 15 L4 from Nikkie problem of configuration if no HV

Installation of the DUT (pT mini module)

Grounding of the mini module

Here is a picture of the grounding of the mini-module. The ground is connected to the ground of the LV power supply. It is also attached to the DAQ crate.

20190716_105246.jpg

Cabling and setting of the LV (UIB)

The UIB needs to be powered by multiple low voltage values. The various voltages can be seen on the following pictures :

20190716_102740.jpg

The voltages to used are mention directly on the PS. It might have to be slightly increased, so to have the correct voltages at the entrance of the UIB. This has to be verified and adjusted with a voltmeter. There is a colour code for the cables. The colour of cables seen on the PS connectors matches the colour of cables on the UIB, as can be seen in the following picture :

20190716_104728.jpg

WARNINGs :

  • there is a black strips on one of the green cable. The position of the cable in the UIB can be seen on the pictures above. It should corresponds to the left green cable on the PS (to be verified)
  • a USB cables has to a POWERED USB port !!. If the s-curves look strange, the USB port might not be powered properly. The easiest is to connect the USB cable directly on the port located on the LV power supply.
  • not to damage the UIB, the LV should be powered simultaneously.

Cabling and setting of the HV

WARNING : the bias voltage should be negative , make sure the led blue led on the right side are on (not the red one). To change the polarity (in principle you don't have to do it, it should be well define by default) .

20190717_090509.jpg

For changing the High Voltage value : add pictures

  • make sure the HV channels are OFF. WARNING, the 2 HV channels of the 2S minimodule should be off/on at the same time. We should avoid as much as possible differences of potential between the 2 channels.
  • with the central button, highlight the channel you want to change. Click on the select button.

20190717_090509.jpg</verbatim>

  • click on the voltage button

20190717_090509.jpg</verbatim>

  • click on the edit button to set the new voltage. Use the central big button (turning it) to set the voltage. Use the digit button to change digit

20190717_090517.jpg</verbatim>

20190717_090525.jpg</verbatim>

20190717_090532.jpg</verbatim>

  • click on the apply button and go back to the main page. To start ramping the voltage, push the channel button.

Preparing the CRATE :

Fixme add picture, with a description of all the element in the crate, how the FC7 connect to the UIB, etc... Describe powering up, cheks and these sort of stuffs.

Trigger system with scintillators

  • 2 beam scintillators for coincidence, each 2mm thick, size of pixel module (≈ 40x67mm2)
  • Hamamatsu small PMTs H10721 with low voltage control
  • In special housing to allow mounting without heavy scotch tape in beam but testing in lab
  • Flexibility of changing scintillator
  • All mecanical parts of housing produced by 3D printer (Thierry G.)
  • First tests were done with 90Sr beta source
  • Very fast signals

Trigger supervisor on GLib

Trigger logic

Cabling

Synchronisation with the beam

The telescope

The Motherboard and the connected pixel module

20200610_152053_6mod.jpg Set up with 6 Modules connected
20200610_153754_6fibers.jpg 20200610_165306_chromini.jpg

Pixel Number Name Hub address Slot on the MB Position on the FMC8SFP Fiber color (number) TBM channels Comments
M3558 BPix_BmO_SEC1_LYR3_LDR2F_MOD4 29 211 B white (6) 11 and 12  
M3211 BPix_BmO_SEC1_LYR3_LDR1F_MOD1 31 221 G green (3) 5 and 6 Troubles with ROC 8, 9 and 10 (noisy) and ROC 11 (empty sometimes) and 15 (empty always)
M3028 BPix_BmO_SEC4_LYR3_LDR1F_MOD4 25 212 E blue (1) 1 and 2  
M3704 BPix_BmO_SEC1_LYR3_LDR4F_MOD1 4 222 F aqua (12) 23 and 24  
M4643 BPix_BmO_SEC1_LYR3_LDR2F_MOD1 15 223 D pink (11) 21 and 22 Clement: problem of config if no HV, Chromini : no data at all. On a connector with a red point
M3672 BPix_BmO_SEC1_LYR3_LDR3F_MOD1 30 214 C purple (10) 19 and 20 Troubles with ROC 14 (noisy) and 15 (empty always). On a connector with a red point

important associated file: /home/xtaldaq/TriDAS/Config/nametranslation/0/translation.dat

20200220_114839_setuphv1.jpg Set up with 4 Modules connected

Pixel Number Name Hub address Slot on the MB Position on the FMC8SFP Fiber color (number) TBM channels Comments
M3704 BPix_BmO_SEC1_LYR3_LDR4F_MOD1 4 223 D white (6) 11 and 12 on a connector with a red point, some ROC have strange behaviour for the VcThrCalDel calibration
M3672 BPix_BmO_SEC1_LYR3_LDR3F_MOD1 30 214 C aqua (12) 23 and 24 on a connector with a red point
M3558 BPix_BmO_SEC1_LYR3_LDR2F_MOD4 29 211 B blue (1) 1 and 2  
M3028 BPix_BmO_SEC4_LYR3_LDR1F_MOD4 25 213 H green (1) 5 and 6  
important associated file: /home/xtaldaq/TriDAS/Config/nametranslation/0/translation.dat

It is very important to have modules connected on the connectors with a red point. If not, we do not succeed in configuring correctly the other modules connected on the motherboard : the I_ana current does not rise after many (!) configurations.

Order to respect to turn it on

  • Start the crate
  • Start the Magma Box (the button on the back side of the box and the button on the front end)
  • Start the PC (sbgat209) and open the different windows with running the script
    ./terminalTabs.sh 
in TriDAS/pixel/ChrominiSupervisor/script/
  • Ping the different boards in the crate with running the script
     ./pingAllHosts.sh 
    in TriDAS/pixel/ChrominiSupervisor/script/
  • Modify the status of some registers on the FED (see Chromie instructions here)
  • Put the low voltages on the motherboard
  • ./useFTDI
    to re-initialize correctly the link with the i2c master

LV and Current info

For a setup with all the 6 modules connected on the MB (with the new LV, configurable from PC!):

LV_6mod_preConfig.png Before Chromini6ModulPhysics configuration -- note that the LV were not perfectly adjusted to MB requierements at the time of the screenshot
 LV_6mod_postConfig.png After Chromini6ModulPhysics configuration

It seems that when the CalDel parameters are not well determined, we need to configure several time the MB and the pixel modules to achieve the target current on I_ana.

For a setup with 4 modules connected on the MB (M3704, M3672,M3558 and M3028):

20200218_152452_4mod_before_config.jpg Before Chromini4ModulPhysics configuration
20200214_165011_4modul_after_config.jpg After Chromini4ModulPhysics configuration

For comparison, with 3 modules connected on the MB (M3704, M3672 and M3558):

20200124_151520_V_3Modul_unconf.jpg Before Chromini3ModulPhysics configuration
20200128_101131_V_3Modul_conf.jpg After Chromini3ModulPhysics configuration

For comparison, with the setup with 2 modules connected on the connectors with the red points (M3704 and M3672):

20200117_171712_V_2Modul_conf.jpg After Chromini2RedPointsPhysics configuration

Low voltage on MB:

  • stored values on the 1st recall set on the 3 LV : for the 2 module configuration
  • stored values on the 2nd recall set on the 3 LV : for the 3 module configuration
  • stored values on the 3rd recall set on the 3 LV : for the 4 module configuration

HV info

NEVER TURN THE HV ON IF THERE IS NO LV APPLIED ON THE MODULES !!!

Keep the modules in the dark when HV is on, and use the air conditioning (and if not, use a table fan) !

The HV can be controled from the PC. Use -130 V. Check the current over time, for 6 modules it is about 44 to 51 microA (depending on the time).

20200610_165306_chromini.jpg Set up with 6 Modules connected

20200220_115301_setuphv2.jpg Set up with 4 Modules connected

chromini_i_hv.pdf Measurement of I vs HV
chromini_i_time_hv130.pdf Measurement of I vs time for HV=130V, time is in minutes and time=0 means 14:00. The variation observed for the 3 first measurements (<=30 min) is directely related to the change of light in the room (impact of the sun outside)! After that, we close the window blinds. But then with time the temparture of the modules started to rise and we observed a higher current on the HV.

Take a physics run

20200610_6phases.png Use the new ChrominiSupervisor smile

  • Start the PoS :
cd /home/xtaldaq/TriDAS
source setenv.sh
cd pixel/PixelRun/
./run.sh --xml ~/TriDAS/pixel/PixelRun/telescopeIphc.xml
  • On the xdaq page on a web browser
    • click on Initialize
    • select the configuration "Chromini6ModulPhysics" in the menu
    • click on Configure
    • then check on the bottom of the page that you see the FED phases as on the example or on the ChrominiSupervisor image linked above.
  • Start the ferol on a terminal
    • cd /opt/xdaq/bin/
      python fedKit.py -q 
      In case you need to launch the ferol with the option -r, type "4" for the mode, "1" for the FED ID, "Yes" to write on disk, and "/tmp" or any other place like "home/xtaldaq/datata" for the directory where to write the data, and write also the correct run number. When using the ChrominiSupervisor, the output directory for the data and the type of data taking (External trigger or Loop back mode) can be choosen on the Supervisor.
  • Click on the AMC13 picture on the ChrominiSupervisor and launch the trigger "lt 1000 1". To launch the AMC13 manually see below the old procedure below.
  • Halt the run on the ChrominiSupervisor
  • Stop the ferol by pressing "q" on the terminal

Here is the procedure to take a physics run with Chromini, based on what is done for Chromie 25 Easy Steps To Data Taking.

  • Start the PoS :
cd /home/xtaldaq/TriDAS
source setenv.sh
cd pixel/PixelRun/
./run.sh --xml ~/TriDAS/pixel/PixelRun/telescopeIphc.xml
  • On the xdaq page on a web browser --> sbgat209:1973 :
    • click on Initialize
    • select the configuration "PhysicsChromini"
    • click on Configure
    • then check on the PoS window that you see the FED phases example
  • Start the ferol
    • cd /opt/xdaq/bin/
      python fedKit.py -r 
    • Type "4" for the mode, "1" for the FED ID, "Yes" to write on disk, and "/tmp" for the directory where to write the data, and write also the correct run number.
You can run without the "-r" option if you are sure that the run number is already correctly synchronised between the ferol and the pos. see the corresponding doc for chromie

  • Prepare the AMC13
    •  /opt/cactus/bin/amc13/AMC13Tool2.exe -c /home/xtaldaq/TriDAS/pixel_debug_tools/TTSStateCheck/address_tables/amc13/connectionSN43iphc.xml 
      rd
      rg
      en 9 f t 
  • Start the run on xdaq
  • Start the trigger on the AMC13
    •   lt c 
      or
        lt 1000 1 
      for 1000 triggers
  • Stop triggering on the AMC13
    •   lt d 
  • Halt the run on xdaw
  • Stop the ferol by pressing "q"

The data taken are stored on "/tmp" as selected on the ferol step.

Take a calibration run

  • Create a new calibration: modify the script "mkNewConfigChromini.sh" in /home/xtaldaq/TriDAS/Config, as suggested by the Chromie documentation Config And Calibration.

  • Start the PoS :
cd /home/xtaldaq/TriDAS
source setenv.sh
cd pixel/PixelRun/
./run.sh --xml ~/TriDAS/pixel/PixelRun/telescopeIphc.xml
  • On the xdaq page on a web browser
    • click on Initialize
    • select the configuration "Chromini6ModulCalDel" in the menu
    • click on Configure
    • then check on the bottom of the page that you see the FED phases
    • switch to the PixelSupervisor
    • start the run
    • decide if you want to upload the new measurements (if yes, this will create a new dac directory with the new files, and uplaod the aliases.txt and configuration.txt files)
    • halt the run

  • List of the calibrations already performed:
    • Delay25 (not working)
    • TBMDelay25
    • CalDel
    • VcThrCalDel
    • PixelAlive
    • SCurve_faster
    • GainCalibration

  • Start the PoS :
cd /home/xtaldaq/TriDAS
source setenv.sh
cd pixel/PixelRun/
./run.sh --xml ~/TriDAS/pixel/PixelRun/telescopeIphc.xml 
  • On the xdaq page on a web browser at the address sbgat209:1973 :
    • click on Initialize
    • select the configuration "ChrominiDelay25"
    • click on Configure
    • start the run
At the end of the run, you have the possibility to upload the new values in the dac directory in an automatic way. Before doing that, check the root files in /home/xtaldaq/TriDAS/pixel/PixelRun/Runs/Run_0/Run_X where X is the run number. If you decide to upload the values, say yes on the xdaq web broswer and then halt the run. In that case, the program will create automatically a new dac directory where it will copy the new .dat files. It will also modify the aliases.txt and configurations.txt files : In aliases.txt, the new dac directory recieves the old alias name, the previous dac directory is therefore not anymore aliased. The calibration name remains the same but it gets a new key number in configurations.txt, because the dac directory has changed. If you decide not to upload the values, just halt the run.

  • List of the calibrations already performed:

  • Observation with HV
M3704 BPix_BmO_SEC1_LYR3_LDR4F_MOD1 CalDel ok, VcThrCalDel ok
M3672 BPix_BmO_SEC1_LYR3_LDR3F_MOD1 Roc 14 and 15 are empty in the CalDel output root file, Roc 15 is empty in the VcThrCalDel output root file,
M3558 BPix_BmO_SEC1_LYR3_LDR2F_MOD4 Roc 6 is noisy and Roc8 is empty in the CalDel output root file, VcThrCalDel ok
M3028 BPix_BmO_SEC4_LYR3_LDR1F_MOD4 CalDel ok, VcThrCalDel ok but sometimes the bottom of the Scurve is empty

  • Interesting commands to know:
    • Make a new alias :
 
cd /home/xtaldaq/TriDAS/Config
/home/xtaldaq/TriDAS/pixel/bin/PixelConfigDBCmd.exe --insertVersionAlias calib 50 ChrominiDelay25 

whe 50 is the new directory in calib, to be associated with the alias name ChrominiDelay25. The existing calib aliases can be seen with the command

/home/xtaldaq/TriDAS/pixel/bin/PixelConfigDBCmd.exe --printVersionAliasList calib
More examples taken from the bash history :
 
cd /home/xtaldaq/TriDAS/pixel
bin/PixelConfigDBCmd.exe --insertVersionAlias calib 51 ChrominiTBMDelay25
PixelConfigDBCmd.exe --printVersionAliasList calib
bin/PixelConfigDBCmd.exe --insertVersionAlias calib 52 ChrominiCalDel
PixelConfigDBCmd.exe --printVersionAliasList calib
bin/PixelConfigDBCmd.exe --insertVersionAlias calib 53 ChrominiVcThrCalibration    
    • Make a new calibration
       
      cd /home/xtaldaq/TriDAS/Config
      PixelConfigDBCmd.exe --insertConfigAlias ChrominiDelay25 calib ChrominiDelay25 amc13 Default dac Physics dcdc Default detconfig ChrominiDet fecconfig Default fedcard Physics fedconfig Default globaldelay25 Default lowvoltagemap Default mask Default nametranslation Default portcard Default portcardmap Default tbm Default tkfecconfig Default trim Default ttcciconfig Default ltcconfig Default powermap Default
    • Add a new directory
 
find . -name delay25.dat
cd /home/xtaldaq/TriDAS/Config/calib/
mkdir 50
cp 2/delay25.dat 50/

Do the reconstruction

At the monent, the reco is working in Caroline's directory on ui6 under CMSSW_10_1_11 release, with the AnaChromini.cc code. The names of the files on which to run have to be put by hand in the PixelTelescope_RAWDataCollector.py python file. It is very important to know which fiber is associated to which module to make identify the detID.

Pixel Number Slot on the MB Fiber color (number) detID Chromie Module Name Chromie Position
M3558 211 white (6) 344463364 M3175 Layer 2 [O]
M3211 221 green (3) 344462340 M3082 Layer 2 [I]
M3028 212 blue (1) 344725508 M3057 Layer 1 [O]
M3704 222 aqua (12) 344724484 M3009 Layer 1 [I]
M4643 223 pink (11) 344987652 M3074 Layer 0 [O]
M3672 214 purple (10) 344986628 M3027 Layer 0 [I]

Note that Layer 2 is seeing the beam before Layer 1 and both of them before Layer 0.

If you want to invert two modules, only change their position on the motherboard but keep the fiber colors as they are connected on the SFP. The five last columns on the previous table should be kept as it is now...

Old configuration with 4 modules connected to the MotherBoard

Pixel Number Slot on the MB Fiber color (number) detID Chromie Module Name Chromie Position
M3704 223 white (6) 344463364 M3175 Layer 2 [O]
M3672 214 aqua (12) 344724484 M3009 Layer 1 [I]
M3558 211 blue (1) 344725508 M3057 Layer 1 [O]
M3028 213 green (1) 344462340 M3082 Layer 2 [I]

To-Do List

  • Redo some calibrations
  • Go inside the new Chromini box
  • Should we make a test with a source?
  • Work on the simu...
  • How to work the telescope with the DUT and the scintillators ?

Installation of the DAQ software (Ph2_ACF)

The DAQ PC is sbgat231, login xtaldaq, password xtaldaq.

The description and instalation of the DAQ soft is shown in the gitlab https://gitlab.cern.ch/cms_tk_ph2/Ph2_ACF

Here is some description of the framework https://indico.cern.ch/event/842824/contributions/3538260/attachments/1921782/3179353/DAQWorkshop_HandsOn.pdf from the tracker phase 2 DAQ workshop https://indico.cern.ch/event/842824/timetable/?view=standard

for setting up the FC7 : https://indico.cern.ch/event/842824/attachments/1920624/3177632/PreparingFC7.pdf

and for installing soft

https://gitlab.cern.ch/fravera/Ph2_ACF/tree/daqWorkshop

on CC7

 sudo yum install boost
sudo yum install boost-devel

create a file (touch) sudo nedit sudo /etc/yum.repos.d/ipbus-sw.repo &

and add the following lines in that file

[ipbus-sw-base]
name=IPbus software repository
baseurl=http://www.cern.ch/ipbus/sw/release/2.5/centos7_x86_64/base/RPMS
enabled=1
gpgcheck=0

[ipbus-sw-updates]
name=IPbus software repository updates
baseurl=http://www.cern.ch/ipbus/sw/release/2.5/centos7_x86_64/updates/RPMS
enabled=1
gpgcheck=0
sudo yum clean all
sudo yum groupinstall uhal
sudo yum install root
sudo yum install root-net-http root-graf3d-gl root-physics root-montecarlo-eg root-graf3d-eve root-geom libusb-devel xorg-x11-xauth.x86_64
 sudo yum install cmake
git clone https://:@gitlab.cern.ch:8443/fravera/Ph2_ACF.git
mkdir Ph2_ACF/build 
cd Ph2_ACF/build 
sudo yum install pugixml
sudo yum install pugixml-devel
cmake ..
make
cd ..
source setup.sh

the list of available firmware :

./bin/fpgaconfig -c settings/IphcDescription.xml -l

To load another firmware :

./bin/fpgaconfig -c settings/IphcDescription.xml -f d19c_8cbc3-1_8cbc3-2.bin -i d19c_8CBC3_workshop.bin

to determine the firmware version to use :

./bin/fpgaconfig -c settings/IphcDescription.xml -i d19c_8CBC3_workshop.bin

to push into gitlab on the branch JAFromDAQWorkshop :

 git push --set-upstream https://gitlab.cern.ch/jandrea/Ph2_ACF.git JAFromDAQWorkshop

To load a new firmware, use the fbgaconfig binary:

 ./bin/fpgaconfig -h 

To get the list of available firmware :

  ./bin/fpgaconfig -c settings/IphcDescription.xml -l

and load that onto the sd card with

 ./bin/fpgaconfig -c settings/IphcDescription.xml -f firmware/d19c_2cbc3_none.bin -i d19c_2cbc3_none

then load the image to the fpga with

  ./bin/fpgaconfig -c settings/IphcDescription.xml  -i  d19c_2cbc3_none

Instructions for calibrating the system (CBC3 mini module for the moment)

  • start by verifying that the box of the mini-telescope is close and light tight. Deplete to -10 V and verify the current on the HV power supply. It should remain well below the microA. Once verified, you can set the HV to 400V, the full depletion being around 300V. After stabilizing, the current consumption of current at 400V should be (KIT double mini module) : 0.1377 microA, 0.4368 microA. This is tested within the casemate. Could be different in the lab.

The following calibration (offset and noise) can be done with external clock (if available)

 <Register name="ext_clk_en"> 1 </Register>   <!-- the external clock should be at 42.5 MHz (85/2) -->  

But the internal trigger should be used

 <Register name="trigger_source"> 3 </Register> <!-- default value is 3 --> 

to do : add pictures illustrating the results of the calbiration

bin/calibrate -f settings/IphcDescription.xml    

The calibration files are produced in the Results folder In IphcDescription.xml, change the path of in IphcDescription.xml the new ones obtained by the calibration

 bin/calibrate -f settings/IphcDescription.xml -n 

at full depletion, noise should be at 5-6 Vcth. Question : out of the scan, how to determine the Vcth value ? From the value of noise from the plots, one needs to calculat the threshold, as 5 sigma above the noise, so it is

threshod = 590 (the pedestal value, not to change) - noise*5(sigma).

Example, for a noise of 9, threshold = 590-9*5 = 545. this value has to be reported to

*Enable testpulses and put them on e.g 180.Testpulses can be enabled and put to a certain height (Low: 250 , high: 0, because of electron mode) with

  <TestPulse enable="1" polarity="0" amplitude="180" channelgroup="0" delay="0" groundothers="1"/>

  • set Vcth Threshold at 550 Vcth (Pedestals defaults value is 590, thus 40 Vcth*180 e-/Vcth ~7200e- threshold

  • disable external clock
   <Register name="ext_clk_en"> 0 </Register> 

</verbatim>

  • set trigger value at 6
  <Register name="trigger_source"> 6 </Register> <!-- default value is 3 -->

  • enable handshake mode (see comments about handshake below)
  <Register name="data_handshake_enable"> 1 </Register>

  • run :
    bin/commission -f settings/IphcDescription.xml -m 0 -r 400 --notdc -l

  • disable testpulses
<TestPulse enable="0" polarity="0" amplitude="230" channelgroup="0" delay="0" groundothers="0"/>

  • set Vcth Threshold at 550 Vcth (Pedestals defaults value is 590, thus 40 Vcth*180 e-/Vcth ~7200e- threshold

    • Enable external clock
<Register name="ext_clk_en"> 1 </Register>

    • Enable external trigger
<Register name="trigger_source"> 5 </Register> <!-- default value is 3 --> 

    • run :
       bin/commission -f settings/IphcDescription.xml -m 0 -r 400 --notdc -l

the latency found (max of the distribution) has to be propagated to the xml file :

 <Settings threshold="420" latency="68"/> 

The same procedure as the one described in the section "Latency scan with signal particles" has to be followed, except that the call of the function should be :

 bin/commission -f settings/IphcDescription.xml -m 0 -r 400 --notdc -s
  <Register name="common_stubdata_delay"> 194 </Register>  

16CBC3 module

NEW 16-CBC3 module

Elog

Installed on xtaldaq, connect, open firefox and go to http://sbgat231:8080/TB.First/

Data taking program and analyses

Link to the googlesheet with measurement points link

Bias scan and re-calibration

The idea of the scan is to determine a voltage point for which the amount of charge collected is relatively close to MIP kind of beam. The idea behind is to run under-depleted and to increase the thresholds so to deal with the extra noise, while keeping high efficiency. The procedure is the following :

  • use a low intensity beam. 10 fA seems to be ok,

  • measure the "efficiency" at 400 Volts (by looking at the number of events without any hits).

  • decrease the bias voltage to 25 Volts by steps of 25 volts, and for each point :

    • re-perform a s-curve scan for the various points, calculate the corresponding Vcth threshold, WARNING : that has to be done without beam
bin/calibrate -f settings/IphcDescription.xml -n

WARNING : intern trigger should be used

<Register name="trigger_source"> 3 </Register> <!-- default value is 3 -->

    • put back the beam, and take data (miniDAQ) for each voltage point. The threshold has to be update for each point, according to the previous scurve scan
./bin/miniDAQ --dqm -f settings/IphcDescription.xml -e 500000 --daq output.dat

WARNING : external trigger should be used

<Register name="trigger_source"> 5 </Register> <!-- default value is 3 -->

    • for each point, check how evolve the number of strip

Rate scan

this idea of this scan is to increase the rate of particles, and see at which point the module starts to show inefficiencies. On take then data with the command

./bin/miniDAQ --dqm -f settings/IphcDescription.xml -e 500000 --daq output.dat

And the compare the number of cluster for a given amount of trigger, with the low rate case.

WARNING : for low rate values, it is difficult to know the exact rate from the monitoring of the Cyclo. The rate has to be determined from the scintillators themselves. This can be done from the trigger counter positioned on the NIM rack. It is counting the number of triggers for 10 seconds => division by 10 should give the trigger rate. Some caveat however :

  • for this to work, the clock of the trigger and of the cyclo should be in perfect synch (for adjustments, see with Ulrich),
  • there is a factor of 2 difference between the trigger rate and the real particle rate (1 bunch over two is ignored), there is a veto there (if I (Jeremy) understood properly). But we need to ask Ulrich for the details.

Link to the googlesheet with measurement points link

Commissioning de la ligne

  • Contrôle du faisceau, focus, steering, diffuser, profiler, si tout va bien ca ne va pas prendre beaucoup plus qu’une journée. Cette partie sera essentiellement exécuté par Jacky Schuler et Michel Pellicioli. Le but sera d’abord d'avoir le faisceau sur le Faraday cup, étudier les paramètres du faisceau

Trigger tests

Tests to be done in the lab

  • Test scintillators with source. Characterise their response and verify they behave similarly. Same trigger rate for the same amplification,

  • Verify carefully the NIM cards, crate and cables. Make sure every component is behaving as it should (no false contact)

  • Rebuilt NIM logic carefully, with the controlled material, and test with a source

  • preparation of a third scintillators

Tests to be done in the beam

  • install a third scintillator, to control trigger efficiency and make rate studies.

  • test individually the scintillators in the beam, characterise their response and verify they behave similarly. Check measured rate vs beam intensity, estimate efficiencies

  • install the two scintillators and verify that the rates are the same. If the are not, invert in the telescope in two scintillators, to see if this is related to the position of the scintillator (to see if it is a acceptance/multiple scattering issue).

  • synchronisation with the 42.5 MHz clock of the cyclo, check rate rates, make a variation of the coincidence windows

  • study the synchronisation between 40 and 42.5 MHz (and possiblt 85 MHz * 40MHz?) simultaneously (important if we want to run the pixels at 40MHz) Understand the rates nad hte beam geometry, play with the focalisation of the beam.

Special request to the DAQ team : Can we have a multi hit TDC with DAQ ? Can we have bit pattern unit with DAQ?

Pixel telescope commissioning

Tests to be done in the lab

  • test and calibrate the modules with the DTB and HV, following the pro

  • test the moduel with a source : use external triggers and the DTB and test with signal. If scintillators not available, use random trigger with high frequancy.

  • finalise the assambly and test of the DAQ (Laurents and Christian, with Caroline, on it)

Tests to be done in the beam

  • test the whole system, if the telescope is running,

  • test with the DTB, if the telescope is not running.

-- JeremyAndrea - 2019-07-17

Topic attachments
I Attachment History Action Size Date Who Comment
JPEGjpg 20190716_102740.jpg r1 manage 2301.4 K 2019-07-22 - 09:58 JeremyAndrea  
JPEGjpg 20190716_104728.jpg r1 manage 2628.8 K 2019-07-22 - 09:58 JeremyAndrea  
JPEGjpg 20190716_105246.jpg r1 manage 2564.3 K 2019-07-22 - 09:49 JeremyAndrea  
JPEGjpg 20190717_090509.jpg r1 manage 2192.4 K 2019-07-17 - 09:42 JeremyAndrea  
JPEGjpg 20190717_090517.jpg r1 manage 2127.1 K 2019-07-17 - 09:42 JeremyAndrea  
JPEGjpg 20190717_090525.jpg r1 manage 2106.2 K 2019-07-17 - 09:42 JeremyAndrea  
JPEGjpg 20190717_090532.jpg r1 manage 2081.3 K 2019-07-17 - 09:42 JeremyAndrea  
JPEGjpg 20200117_171712_V_2Modul_conf.jpg r1 manage 2327.5 K 2020-02-11 - 09:16 CarolineCollard Building Chromini with 2 or 3 modules
JPEGjpg 20200124_151520_V_3Modul_unconf.jpg r1 manage 2433.5 K 2020-02-11 - 09:16 CarolineCollard Building Chromini with 2 or 3 modules
JPEGjpg 20200124_151707_MB_3Modul.jpg r1 manage 2449.8 K 2020-02-11 - 09:16 CarolineCollard Building Chromini with 2 or 3 modules
PDFpdf 20200124_StrangeBehaviours.pdf r1 manage 1080.5 K 2020-01-24 - 12:12 CarolineCollard  
JPEGjpg 20200128_101131_V_3Modul_conf.jpg r1 manage 2287.7 K 2020-02-11 - 09:16 CarolineCollard Building Chromini with 2 or 3 modules
PDFpdf 20200210_M3558_calibrations.pdf r1 manage 822.3 K 2020-02-10 - 17:39 CarolineCollard  
JPEGjpg 20200214_165011_4modul_after_config.jpg r1 manage 2465.3 K 2020-02-27 - 10:21 CarolineCollard set-up with 4 modules connected
PDFpdf 20200217_4modules_w_HV.pdf r2 r1 manage 2531.5 K 2020-02-27 - 13:56 CarolineCollard Results with HV at 130 V
JPEGjpg 20200218_152452_4mod_before_config.jpg r1 manage 2360.5 K 2020-02-27 - 10:21 CarolineCollard set-up with 4 modules connected
JPEGjpg 20200220_114839_setuphv1.jpg r1 manage 2566.2 K 2020-02-27 - 10:21 CarolineCollard set-up with 4 modules connected
JPEGjpg 20200220_115301_setuphv2.jpg r1 manage 2717.1 K 2020-02-27 - 10:21 CarolineCollard set-up with 4 modules connected
PDFpdf 20200415_geometrie.pdf r1 manage 6543.5 K 2020-04-15 - 11:58 CarolineCollard First test on Chromini's geometry
PDFpdf 20200604_calibrations.pdf r1 manage 10584.7 K 2020-06-04 - 19:06 CarolineCollard Study of several calibration runs, showing changes over time...
JPEGjpg 20200610_152053_6mod.jpg r1 manage 2329.4 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
JPEGjpg 20200610_153754_6fibers.jpg r1 manage 2475.7 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
JPEGjpg 20200610_165306_chromini.jpg r1 manage 2472.9 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
PNGpng 20200610_6phases.png r1 manage 195.8 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
PDFpdf 20200630_calibrations.pdf r1 manage 2423.2 K 2020-06-30 - 12:06 CarolineCollard Study of calibration runs with a 6-module configuration (June 30, 2020)
PNGpng LV_6mod_postConfig.png r1 manage 56.5 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
PNGpng LV_6mod_preConfig.png r1 manage 56.5 K 2020-06-16 - 11:37 CarolineCollard Chomini configuration with 6 modules
PDFpdf chromini_i_hv.pdf r1 manage 13.6 K 2020-02-27 - 10:53 CarolineCollard Measurements of Current when applying HV on the modules
PDFpdf chromini_i_time_hv130.pdf r1 manage 13.4 K 2020-02-27 - 10:53 CarolineCollard Measurements of Current when applying HV on the modules
Edit | Attach | Watch | Print version | History: r55 < r54 < r53 < r52 < r51 | Backlinks | Raw View | WYSIWYG | More topic actions
Topic revision: r55 - 2020-06-30 - CarolineCollard
 
    • Cern Search Icon Cern Search
    • TWiki Search Icon TWiki Search
    • Google Search Icon Google Search

    Sandbox All webs login

This site is powered by the TWiki collaboration platform Powered by PerlCopyright &© 2008-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback