

DOOCS DAQ software for the EUDET prototype

Valeria Bartsch (UCL)
Andrzej Misiejuk (RHUL)
Tao Wu (RHUL)

Overview over the task - DOOCS software -

http://tesla.desy.de/doocs/doocs.html

Overview over the task - ENS naming service -

provided by
DOOCS and
already in use
for RPC
communication
between client
and server

ENS Naming Service

Screenshot of the rpc util GUI

- Naming convention is already specified (similar for LDA, DIF and ASICS)
- Properties need input from hardware programmers

Overview over the task

Hardware interface most important at this stage

Hardware interface

Concentrating on the ODR interface:

- because it is the first hardware layer to talk to
- the device is close to be ready
- easy communication with colleagues at UCL and RHUL

Plan:

- start with the LDA and DIF in September
- have the interfaces ready about end of the year

Overview over the ODR interface

- communication between different parts of DOOCS by RPCs
- configuration files used to find different parts of the system

Overview over the ODR interface

- one device server can have many instance all connecting to different ports and hostnames
- using 2 threads: one for receiving, one for sending on the socket
- sockets format chosen to build an interface to the ODR and the LDA

suggested timeline

GUI, alarm handling, logging

lessons from the prototype

- when can ODR actually read new configurations?
- does it actually accept configurations?
- how shall we communicate with the LDA? (with a socket stream to the ODR or on a separate communication path?)
- any other things?