The AX-PET Demonstrator: Performance and first results

Chiara Casella
ETH Zurich
on behalf of the AX-PET Collaboration

12th Topical Seminar on Innovative Particle and Radiation Detector
June 7th, 2010 - Siena
AX-PET : AXial Positron Emission Tomography
A novel geometrical concept for a high resolution, high sensitivity PET scanner

• AX-PET
 • why axial ?
 • experimental concept
 • AX-PET ingredients

• AX-PET DEMONSTRATOR (not a full scanner, 2 PET modules)

• AX-PET PERFORMANCE
 • assessed from dedicated test setups
 • spatial, energy, timing resolution

• VERY FIRST RECONSTRUCTED IMAGES of extended objects
AX-PET COLLABORATION

P. Beltramea, E. Bolleg, A. Braema, C. Casellab, E. Chesic, N. Clifthornef, R. De Leod, G. Dissertorib, L. Djambazovb, V. Fantia,1, C. Jorama, H. Kagane, W. Lustermannb, F. Meddih, E. Nappid, F. Nessi-Tedaldib, J. F. Oliverc, F. Paussb, M. Rafecasc, D. Renkerh,2, A. Rudgec, U. Ruotsalaineni, D. Schinzelb, T. Schneidera, J. Seguinota, P. Solevic, S. Stapnes8, U. Tunai, P. Weilhammerc

aCERN, PH Department, CH-1211 Geneva, Switzerland
bInstitute for Particle Physics, ETH Zurich, CH-8093 Zurich, Switzerland
cIFIC, E-46071 Valencia, Spain
dINFN, Sezione di Bari, I-70122 Bari, Italy
eOhio State University, Columbus, Ohio 43210, USA
fUniversity of Michigan, Ann Arbor, MI 48109, USA
gUniversity of Oslo, NO-0317 Oslo, Norway
hUniversity of Rome “La Sapienza”, I-00185 Rome, Italy
iTampere University of Technology, Tampere, Finland
PET: Positron Emission Tomography

IDEAL PET SCANNER REQUIREMENTS:
- 2π full coverage
- maximum spatial resolution (up to the limits imposed by the physics of the β+ annihilation)
- maximum sensitivity
- good energy resolution
- good time performance
- ...

- **in-vivo functional imaging technique**
 - a biologically active compound labeled with a proton rich isotope (e.g. 18F, 11C, 15O, 13N...) is injected into the body
 - $p \rightarrow n + e^+ + \nu_e$
 - $e^+ e^- \rightarrow \gamma \gamma$
 - ($E_{\gamma} = 511$ keV)

- detection principle:
 - detection of the coincidence of two back to back photons (511 keV each)

- imaging reconstruction software => 3-dim image of the radiotracer concentration in the body
From standard (i.e. radial) to axial PET

conventional PET
(radial arrangement of scintillator detectors)

compromise btw **spatial resolution** (R) and **sensitivity** (S)

- long crystals (big L) \Rightarrow high S, poor R
 - parallax error: $\delta_p = L \sin \theta$
 - no depth of interaction (DOI) information

- small crystals (small L) \Rightarrow high R, poor S
 detection efficiency: $\varepsilon = 1 - e^{-L/\lambda}$
From standard (i.e. radial) to axial PET

conventional PET
(radial arrangement of scintillator detectors)

=> new geometry:

AXIAL PET

compromise btw spatial resolution \(R \) and sensitivity \(S \)

- long crystals (big \(L \)) \(\Rightarrow \) high \(S \), poor \(R \)
 - parallax error: \(\delta_p = L \sin\theta \)
 - no depth of interaction (DOI) information

- small crystals (small \(L \)) \(\Rightarrow \) high \(R \), poor \(S \)
 detection efficiency: \(\epsilon = 1 - e^{-L/\lambda} \)

• long crystals (\(L >> L_{\text{radial}} \))
• axially arranged around the body
3D localization of the photon interaction point without compromising between spacial resolution and sensitivity

(1) TRANSAXIAL COORDINATE \((x,y)\)

- Transaxial coordinate: from position of the hit crystal
- Transaxial resolution = \(d/\sqrt{12}\) FWHM

- To increase spatial resolution => Reduce crystals size \((d)\)
- To increase sensitivity => Add additional layers
3D localization of the photon interaction point without compromising between spatial resolution and sensitivity

(1) TRANSAXIAL COORDINATE \((x,y)\)

- Transaxial coordinate: from position of the hit crystal
- Transaxial resolution = \(d/\sqrt{12}\) FWHM

- To increase spatial resolution => Reduce crystals size \((d)\)
- To increase sensitivity => Add additional layers

(2) AXIAL COORDINATE \((z)\)

- Axial coordinate: center of gravity method
- Axial resolution < \(w\) (goal: < mm)
3D localization of the photon interaction point without compromising between spatial resolution and sensitivity

(1) TRANSAXIAL COORDINATE (x,y)

- Transaxial coordinate: from position of the hit crystal
- Transaxial resolution = d/√12 FWHM

- To increase spatial resolution => Reduce crystals size (d)
- To increase sensitivity => Add additional layers

from scintillator crystals: x, y, Energy deposition

(2) AXIAL COORDINATE (z)

- Axial coordinate: center of gravity method
- Axial resolution < w (goal: < mm)

from WLS strips: z
AX-PET MODULE

- SCINTILLATOR CRYSTALS:
 - Inorganic LYSO (Lu$_{1.8}$Y$_{0.2}$SiO$_5$: Ce, Prelude 420 Saint Gobain) crystals
 - high atomic number
 - high density ($\rho = 7.1$ g/cm3)
 - λ @511 keV ~ 1.2 cm
 - quick decay time ($\tau = 41$ ns)
 - high light yield (32000 γ/MeV)
 - $3 \times 3 \times 100$ mm3

- WAVE LENGTH SHIFTING STRIPS (WLS):
 - ELJEN EJ-280-10x
 - highly doped (x10 compared to standard) to optimize transmission
 - $0.9 \times 3 \times 40$ mm3

- Each crystal and WLS strip is readout individually by its own photodetector

PHOTODETECTORS

- MPPC (Multi Pixel Photon Counter) from Hamamatsu
 - also known as SiPM / G-APD
 - high PDE ($\sim 50\%$)
 - high gain (10^5 to 10^6)
 - insensitive to magnetic field
 - compact size
 - low bias voltages ($\sim 70V$)
 - temperature dependent
 - dark rate

- MPPC S10362-33-050C:
 - 3x3 mm2 active area
 - 50 μm x 50 μm pixel
 - 3600 pixels
 - Gain $\sim 5.7 \times 10^5$

- MPPC 3.22\times1.19 Octagon-SMD:
 - 1.2 x 3.2 mm2 active area
 - 70 μm x 70 μm pixel
 - 1200 pixels
 - Gain $\sim 4 \times 10^5$
 - custom made units
AX-PET MODULE

- MECHANICAL HOUSING
- LYSO + MPPC
- LYSO + MPPC + KAPTON
- WLS + MPPC + KAPTON

MODULE ASSEMBLING

- MECHANICAL HOUSING
- LYSO
- WLS

BARE ASSEMBLED MODULE, including CONNECTIVITY CARDS
Goal of the project: Build and fully characterize a demonstrator for the AX-PET concept

- **not a full scanner**, but **2 modules**
- **to mimic the full scanner**: 2 mods coincidence + rotating source

a) small FOV coverage:
- 2 modules fixed, back to back position (180°)
- rotating source in the center of FOV

b) extended FOV coverage:
- allow coincidences btw 2 modules not at 180°
- 1st mod. fixed
- 2nd mod. rotating (θ=180° +/- 60°)
- rotating source

“gantry” system / mechanics for the demonstrator

- 2nd module support (θ = 180° +/- 60°)
- source support (360°)
- 1st module support (fixed)

- **dedicated simulations, 2 mods** + validation of the simulation from the data
- **final performance of the full scanner**: assessed with dedicated simulations, full scanner
• Custom designed DAQ system - Individual analogue readout of MPPC output

• **Amplifiers** : OPA486 (Lyso) / OPA487 (WLS) - Fast energy sum of all the crystals module

• **VATA GP5 chip** : 128-ch charge sensitive integrating [AXPET : x4 VATA GP5 chips]
 - Fast (~40ns) / Slow (~250ns) branches
 - Sequential or Sparse readout mode
 - **Sparse** = the analogue signals of the flagged - i.e. above thr - channels only is multiplexed into the output

• **EXTERNAL TRIGGER** (NIM logic) :
 Coincidence of the two 511 keV annihilation photons (one per module), with high energy discrimination thr on the module energy sum
AXPET (2 modules, coinc.) is fully modeled by **dedicated Monte Carlo simulations**

GATE simulation package (G4 application for tomographic emission, including time-dependent phenomena e.g. detector movement)

AXPET challenges for realistic simulations:
- non conventional PET design
- WLS parameterization in the digitizer(*)
- Sorter for the coincidences
 (*) = implied major change in the simulation source code

Excellent agreement data / simulations:

- **Typical LYSO energy spectrum**
- **LYSO multiplicity**

One AXPET Module illuminated by a collimated 511 keV gamma beam:
Data and Simulations
AX-PET STORY: RECENT MILESTONES

• Module 1: assembled - July 2009

• Module 2: assembled - Sept 2009

• Single module characterization in a dedicated test setup (Aug ’09 - Nov ’09)
 - with 22Na point-like sources
 - at CERN

• Two modules in coincidence - dedicated test setup (Nov ’09 - March ’10)
 - with 22Na point-like sources
 - at CERN

• Transition to the new gantry setup (Mar - Apr 2010)
 - at CERN, with point-like sources on rotating table

• Two modules in coincidence with phantoms filled with 18F-radiotracers
 - at ETH Zurich, Radiopharmaceutical Institute
 - 20th - 30th April 2010
• Module 1 : assembled - July 2009
• Module 2 : assembled - Sept 2009

• Single module characterization in a dedicated test setup (Aug ‘09 - Nov ‘09)
 - with 22Na point-like sources
 - at CERN

• Two modules in coincidence - dedicated test setup (Nov ‘09 - March ‘10)
 - with point-like sources
 - at CERN

• Transition to the new gantry setup (Mar - Apr 2010)
 - at CERN, with point-like sources on rotating table

• Two modules in coincidence with phantoms filled with 18F-radiotracers
 - at ETH Zurich, Radiopharmaceutical Institute
 - 20th - 30th April 2010
AX-PET STORY: RECENT MILESTONES

- Module 1: assembled - **July 2009**
- Module 2: assembled - **Sept 2009**

- Single module characterization in a dedicated test setup (**Aug ‘09 - Nov ‘09**)
 - with **22Na** point-like sources
 - at CERN

- Two modules in coincidence - dedicated test setup (**Nov ‘09 - March ’10**)
 - with point-like sources
 - at CERN

2-D moving station / later replaced by rotating motor

Chiara Casella IPRD10 - June 7th, 2010
AX-PET STORY: RECENT MILESTONES

• Module 1: assembled - July 2009
• Module 2: assembled - Sept 2009
• Single module characterization in a dedicated test setup (Aug ʻ09 - Nov ʻ09) - with 22Na point-like sources - at CERN
• Two modules in coincidence - dedicated test setup (Nov ʻ09 - March ʻ10) - with 22Na point-like sources - at CERN
• Transition to the new gantry setup (Mar - Apr 2010) - at CERN, with point-like sources on rotating table
• Two modules in coincidence with phantoms filled with 18F-radiotracers - at ETH Zurich, Radiopharmaceutical Institute - 20th - 30th April 2010
AX-PET STORY: RECENT MILESTONES

- Two modules in coincidence with phantoms filled with 18F-radiotracers
 - at ETH Zurich, Radiopharmaceutical Institute (Animal PET Lab)
 - 20th - 30th April 2010
• Module 1 : assembled - **July 2009**

• Module 2 : assembled - **Sept 2009**

• Single module characterization in a dedicated test setup (**Aug ‘09 - Nov ‘09**)
 - with 22Na point-like sources
 - at CERN

• Two modules in coincidence - dedicated test setup (**Nov ‘09 - March ’10**)
 - with point-like sources
 - at CERN

• Transition to the new gantry setup (**Mar - Apr 2010**)
 - at CERN, with point-like sources on rotating table

• Two modules in coincidence with phantoms filled with 18F-radiotracers
 - at ETH Zurich, Radiopharmaceutical Institute
 - **20th - 30th April 2010**
AX-PET STORY: RECENT MILESTONES

- Module 1: assembled - July 2009
- Module 2: assembled - Sept 2009

- Single module characterization in a dedicated test setup
 - with 22Na point-like sources
 - at CERN

- Two modules in coincidence - dedicated test setup (Nov '09 - March '10)
 - with point-like sources
 - at CERN

- Transition to the new gantry setup (Mar - Apr 2010)
 - at CERN, with point-like sources on rotating table

- Two modules in coincidence with phantoms filled with 18F-radiotracers
 - at ETH Zurich, Radiopharmaceutical Institute
 - 20th - 30th April 2010

DETECTOR PERFORMANCE:
- energy resolution
- spatial (axial) resolution
- timing performance

• image reconstruction
• very first results
Single module characterization

for energy calibration, energy resolution

collimated beam spot, spatial resolution

LYSO occupancy

LYSO No. 44 - raw ADC

Single LYSO energy spectrum

central WLS spectrum

peripheral WLS spectrum

Chiara Casella IPRD10 - June 7th, 2010
After ENERGY CALIBRATION (i.e. from raw ADC counts to keV units):

\[\text{R}_{\text{FWHM}} \text{ Sum} \sim 12.25\% \text{ at } 511 \text{ keV} \]

(on the summed distribution)
TOP View - $d(\text{Mod1, Mod2}) = 150 \text{ mm}$

SIDE View - $d(\text{Mod1, Mod2}) = 150 \text{ mm}$

N$_\text{coinc_evts}$=100

on scale! [mm]

/home/daq/axpet/log/run02730.log INFO: Temperature is 20.89 in Mod1 21.05 in Mod2
/home/daq/axpet/log/run02730.log INFO: ***************************************
/home/daq/axpet/log/run02730.log INFO: Run Number: ********** 02730 **********
/home/daq/axpet/log/run02730.log INFO: ***************************************
/home/daq/axpet/log/run02730.log INFO: Run Type: SPARSE readout
/home/daq/axpet/log/run02730.log INFO: Comment: Test_Mod1_AND_Mod2 Temp. 20.89 M1 - 21.05 M2
Intersection of LOR with central plane
no tomographic reconstruction !!!

\[R_{intr} = \sqrt{R_{meas}^2 - R_{\rho}^2 - R_{180}^2} \]

\((R_{FWHM})_z \sim 1.5 \text{ mm} \)
- intrinsic resolution
- positron range
- non collinearity
- (source dimensions ; \(\phi = 250 \mu \text{m} \))

\(=> (R_{intrinsic_FWHM})_z \sim 1.35 \text{ mm} \)
- measure delay of coincidence wrt Mod2
- measurement from the scope [Lecroy Waverunner LT584 L 1GHz]

Measured time resolution: FWHM ~ 1.9 ns
MEASUREMENTS with PHANTOMS

- First measurements with extended objects filled with radio-tracers
- Apr 26th-30th 2010
- at ETH Zurich - Radiopharmaceutical Institute (Animal PET Lab)
- \(^{18}\text{F} - \text{FDG} (t_{1/2} \sim 110 \text{ mins})
- Phantoms used: micro-Derenzo, with and without inserts \((L= 1.5 \text{ cm}; \varnothing = 2 \text{ cm}; \varnothing_{\text{rods}} = [0.8,1.3] \text{ mm})\)
 - mouse-like phantom \((L = 7 \text{ cm}; \varnothing = 3 \text{ cm})\)
 - capillaries \((L = 3 \text{ cm}; \varnothing = 1.4 \text{ mm})\)

- acquisition method: only source rotating - 2 modules fixed (i.e. center FOV)
- Dist_2mod2 = 15 cm
- for the moment only “golden events” are used for the reconstruction
 (1 LYSO per module, unambiguous definition of the z coordinate)

RECONSTRUCTION

- Statistical **iterative** reconstruction method
- **MLEM** (Max Likelihood Expectation Maximisation)
- **System matrix**
 - detailed description of the geometry
 - based on Siddon algorithm
- **FOV**: voxel dimension: \(1 \times 1 \times 1 \text{ mm}^3\)

MEASUREMENTS GOALS:

- test performance
- uniformity
 - Derenzo without inserts
 - mouse-like phantom
- resolution
 - Derenzo with inserts
 - Capillaries
• phantom : 3 capillaries (/ xy)
• capillaries (x3) : L = 3 cm ; Diam = 1.4 mm ; Pitch = 5 mm
• 17 positions of the phantom, θ in [0°, 170°]
• FOV : 30 x 30 x 83 vox³ = 30 x 30 x 83 mm³
• 30 iterations

FWHM ~ 1.73 mm
FWHM ~ 1.96 mm
FWHM ~ 1.96 mm
RECONSTRUCTED IMAGE : Capillaries (2)

- phantom: 8 capillaries (// WLS)
- capillaries (x8): \(L = 3 \text{ cm} \); \(\text{Diam} = 1.4 \text{ mm} \); \(\text{Pitch} = 5 \text{ mm} \)
- 17 positions of the phantom, \(\theta \) in \([0^\circ, 170^\circ]\)

- FOV: \(30 \times 30 \times 83 \text{ vox}^3 = 30 \times 30 \times 83 \text{ mm}^3 \)
- 30 iterations

Preliminary!!!
• phantom: micro Derenzo
• \(L = 1.5 \text{ cm}; \text{Diam} = 2 \text{ cm}; \text{Rods}_\text{Diam} = 0.8\div1.3 \text{ mm} \)
• 17 positions of the phantom, \(\theta \) in \([0^\circ,170^\circ]\)
• FOV: \(30 \times 30 \times 30 \text{ vox}^3 = 30 \times 30 \times 30 \text{ mm}^3 \)
• 200 iterations

- more statistics available (x2)
- no correction applied for the moment
- possible refinements of system matrix
CONCLUSIONS and OUTLOOK

Novelty of AX-PET

(1) as calorimeter

• “unconventional” use of WLS to collect escaping scintillation light / bare scintillators

(2) as PET

• new axial geometry
• Sensitivity and Resolution decoupled
• DOI (Depth Of Interaction) direct measurement => parallax free system
• Resolution / Sensitivity tunable with granularity / Nr. layers
• Possibility to identify ICS (Inter Crystal Scattering) => Tag & discard ICS evts (Resolution fully maintained)
 OR Tag & reconstruct ICS evts (Sensitivity increased)
• Versatile concept, can be scaled in size and Nr. layers (small animal PET, brain PET, PEM...)
• Fully simulated detector

Status / Performance of AX-PET

• 2 modules (i.e. demonstrator) built and characterized (individually / in coincidence) with sources

• ASSESSED PERFORMANCE :
 - energy resolution: R_FWHM 11.6 % (@511 keV)
 - time resolution : Δt ~ 1.9 ns FWHM
 - intrinsic spatial resolution : R_FWHM ~ 1.35 mm

• First measurements campaign with phantoms filled with FDG radiotracer
• First reconstructed images (very preliminary, but encouraging...)

What’s next?

• improve the quality of the reconstruction (system matrix / statistics / corrections ...)
• potentiality of Inter Crystal Scattering (ICS)
• large FOV coverage: new phantom measurements campaign (July 2010 ?)
• ...

Chiara Casella IPRD10 - June 7th, 2010