Experience from analyzing pp collisions in ALICE

Konstantin Mikhaylov

ITEP, Moscow
Simulations: software and input

- **Aliroot v4-14-Rev-01, AliFemto from svn/trunk**
- **PDC2007: PYTHIA pp 14 TeV**
 (the pp events simulated at the request of the V0 group with no ITS refit requirement:
 /alice/sim/PDC_07/LHC07f/1600*)
- **AliRoot local analysis** (~2*10^6 events)
 - 1D $\pi^+\pi^+$ correlations
 - 0.1 < P_T < 1.0 GeV/c
 - Standard cut on splitting-merging
 - Influence of Vz, Multiplicity, Particle collection on the correlation function
- **Pythia direct analysis** (read galice.root ~7*10^5 events)
 - 1D $\pi^+\pi^+$ correlations
 - 0.1 < P_T < 1.0 GeV/c, |η|<1
\[\pi\pi \quad r_0 = 1 \text{fm} \quad \text{Model (Blue), Experimental (red)} \]

NumFakepippipinvcoeff

- Entries: 2.742262e+07
- Mean: 0.2168
- RMS: 0.1456

Numqinvcoeff

- Entries: 2766551
- Mean: 0.2452
- RMS: 0.1456
- \(\chi^2 / \text{ndf} \): 46.32 / 46
- \(r_1 \): 1.012 ± 0.088
- \(\lambda_1 \): 0.05525 ± 0.00742
- \(r_2 \): 5.64 ± 1.33
- \(\lambda_2 \): 0.1404 ± 0.0646
PYTHIA direct events

$\pi^+\pi^+$ correlation function

Cuts:
0.1 < P_T < 1.0 GeV/c
-1. < η < +1.

CF=Real/Mixed

Energy and Momentum Conservation-Induced Correlations:
Due to energy-momentum conservation probability of two particle emitted at same direction is smaller than in opposite direction

No correlations at small Q

N$_{\text{ch}}$=0
We created correlations which did not exist in PYTHIA.
CF was fitted with superposition of two Gaussian.
Artificial CF with direct pions and pions from resonances?

Does it come from mixing procedure?
Vz: ALIFEMTO and PYTHIA

Vertex position in z

ALIFEMTO

EvVertZcutPass

Entries: 1821205
Mean: -0.004667
RMS: 5.235
χ² / ndf: 2341 / 147
Constant: 2.736e+04 ± 25
Mean: -0.005834 ± 0.004036
Sigma: 5.323 ± 0.003

Reconstruction?

PYTHIA

Pythia: Z-vertex pi+

Entries: 610115
Mean: 0.02362
RMS: 6.001
χ² / ndf: 539.4 / 28
Constant: 1.749e+04 ± 45
Mean: 0.03213 ± 0.01178
Sigma: 5.723 ± 0.010
Acceptance for mixed events

TPC size is equal 2.5m
Collision point distribution is Gaussian with sigma ~5.5cm
Does it important for correlation function (mixing)?

Blue is real pair with Z=0 (both particles are in acceptance).
Red is mixed pair with different Z!=0 (one is in acceptance and other is out of acceptance due to inefficiency close to edge of TPC).
We create the correlation!

Solution: mix only events which have a very similar z-vertex position!
CFs for different Vz

We can calculate correlation functions for different Z-vertex regions:

- Divide Vz onto three regions with approximately same statistics
 - Vz < -2.5 cm
 - -2.5 < Vz < 2.5 cm
 - Vz > 2.5 cm

- Divide Vz by two regions around Vz=0
 - -5.0 < Vz < 0.0 cm
 - 0.0 < Vz < 5.0 cm

And add correlation functions from different regions according:

\[
CF_{\text{TOTAL}} = \sum_{\text{bin}} \frac{(CF_1 \times w_1 + CF_2 \times w_2 + CF_3 \times w_3)}{(w_1 + w_2 + w_3)} \quad (1),
\]

here \(w = 1/N \)

\[
\Delta CF_{\text{TOTAL}} = \frac{1}{\sqrt{N_1 + N_2 + N_3}} \quad (2)
\]
Vz<-2.5, |Vz|<2.5, Vz>2.5 cm

Vz<-2.5cm

|Vz|<2.5cm

Vz>+2.5cm

|Vz| < 2.5cm

Vz>2.5cm

SumCFs: Vz<-2.5cm + |Vz|<2.5cm + Vz>2.5cm

\[\sum \text{of 3 CFs} \]

Simple Analysis
-5 < Vz < 0 cm and 0 < Vz < 5 cm

\[-5 < V_z < 0 \text{ cm} \]

\[0 < V_z < -5 \text{ cm} \]

\[\sum \text{ of 2 CFs} \]

Simple Analysis

\[|V_z| < 2.5 \text{ cm} \]
AliFemto Simple Analysis:

AliFemtoSimpleAnalysis* an = new AliFemtoSimpleAnalysis();

New: STAR Z-vertex and multiplicity mixing procedure

With z-vertex mixing:

AliFemtoVertexMultAnalysis *an =
 new AliFemtoVertexMultAnalysis(NbinsVz, -15.6, 15.6, NbinsMulti, 2, 100);

an->SetNumEventsToMix(10); //Number of events to mix
an->SetMinSizePartCollection(2); //Minimum number of particles in event after all cuts

Test with different cut parameters

#1 NbinsVz=20, NbinsMulti=1
#2 NbinsVz=1, NbinsMulti=10
#3 Combined: NbinsVz=20 and NbinsMulti=10
Vz and Multiplicity mixing

Vz-, Mult-mixing

Simple Analysis

NbinsVz=1, NbinsMulti=10

NbinsVz=20, NbinsMulti=1

NbinsVz=20, NbinsMulti=10

Q_{INV}, GeV/c
Vz, Multiplicity, and |Vz|<2.5cm

\[
\begin{array}{c|c|c}
\chi^2 / \text{ndf} & 83.84 / 48 & 55.32 / 48 \\
p0 & 1.044 \pm 0.003 & 1.023 \pm 0.003 \\
p1 & -0.1077 \pm 0.0098 & -0.05344 \pm 0.00974 \\
\end{array}
\]

- \text{NbinsVz}=1, \text{NbinsMulti}=10
- \text{NbinsVz}=20, \text{NbinsMulti}=1
- \text{NbinsVz}=20, \text{NbinsMulti}=10
Conclusion and To Do

- Only events with at least two particle (pions) should be taken into analysis
- V_z, multiplicity mixing procedure is very important
- V_z mixing is most important in case of pp collision at 14 TeV
- May be problem with Multiplicity mixing?

After a lot of studies we still have a slope in the CF (CF~ 1.02-0.05*Q)

- To be studied multiplicity cut (m>3, m>4, m>5,...)
- To be studied rapidity cut (-1<y<0, 0<y<+1)
- We need additional monitors (histograms):
 - Rapidity (pseudo-rapidity)
 - TPC efficiency: 2D plot rapidity vs V_z