New ATLAS Triggers Based on the Missing E_T Significance

The prospects of an increasing amount of pile-up in 2011 will make it difficult to maintain trigger thresholds for Missing E_T at the same levels that were successfully used in 2010. However, in order to extend the range of many physics analyses, including SUSY and beyond the standard model searches, it will be necessary to trigger on missing momentum while minimizing the background contamination from QCD fakes.

To address this issue, ATLAS has developed a family of triggers which accept events based on Missing E_T Significance (XS), a quantity which approximates the level of Missing E_T in units of standard deviations of the background Missing E_T distribution. This quantity is parameterized as:

$$\text{Missing } E_T \text{ Significance (XS)} = \frac{\text{Missing } E_T}{\sigma(\sqrt{\text{Sum } E_T} - c)}$$

Missing E_T Resolution

- Fake Missing E_T predominantly comes from the effects of finite calorimeter resolution.
- The scale of fake Missing E_T in background events is linear in $\sqrt{\text{Sum } E_T}$, where Sum E_T is the scalar sum of transverse energy.

Level-1 Implementation

Implementation of the new Missing E_T Significance triggers required a re-formulation of the Missing E_T and Sum E_T logic at the firmware level, as well as corresponding changes to the online and offline simulations, the interaction with the L1 Central Trigger Processor (L1CTP), and the output to the Level 2.

The design of the Missing E_T logic is based on four look-up tables (LUTs) which receive digitalized sums of the E_T and E_y deposited in the calorimeter and calculate the Missing E_T and Significance logic in parallel. The first LUT receives E_x and E_y and performs the Missing E_T calculation according to Missing $E_T = \sqrt{E_x^2 + E_y^2}$. The second LUT receives the Sum E_T and finds the square root. These two values form the input to the Missing E_T Significance LUT, which calculates Significance according to the above equation, where a and c are adjustable parameters. A set of 8 thresholds are then applied to the Missing E_T Significance results. All threshold bits, including the new X_S bits, are sent to the L1CTP. In the event of an L1Accept from the L1CTP, all energy values including the Missing E_T Significance itself are sent to Level 2.

Physical Motivation

![Real Missing E_T ($W \to e\nu$) vs. Fake Missing E_T (QCD)]

- One expects a Missing E_T distribution for real events bounded by an approximate parabola in the plots to the left.
- QCD events have a Missing E_T distribution which tends to populate a different region which is linear in $\sqrt{\text{Sum } E_T}$.
- Contours of Significance are straight lines in the Missing E_T, $\sqrt{\text{Sum } E_T}$ plane.
- Triggers based on Missing E_T Significance can accept events with an reasonable rate by eliminating background QCD while maintaining a high signal efficiency.

Separation between Signal and QCD Background

Growing levels of pile-up will lead to large calorimeter activity and will increase the rate of fake Missing E_T. Events with more primary vertices have high rates of standard Missing E_T triggers. However, fake Missing E_T comes from calorimeter resolution effects, scales as a known function of Sum E_T, and hence, to the extent that pile-up simply overlaps non-interesting events, our model for the Missing E_T resolution still holds.

Therefore, Level 1 significance triggers, whose rate are dominated by QCD background, will remain steady even as pile-up increases.

Robustness against Pile-Up

Distributions of Missing E_T and Significance with varying number of primary vertices.

Rate estimates for Level 1 Missing E_T and Significance triggers as a function of pile-up.