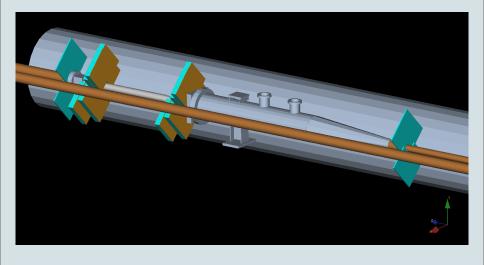
BGV MC Digitization

Geo tag: 1r15 Digi tag: 0r2

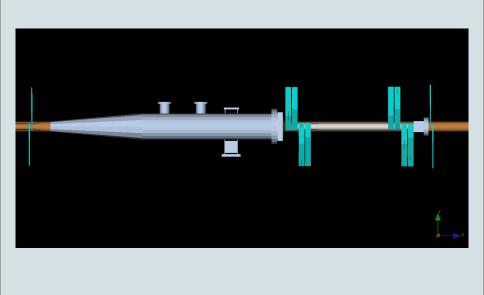
14 / 03 / 2014

- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

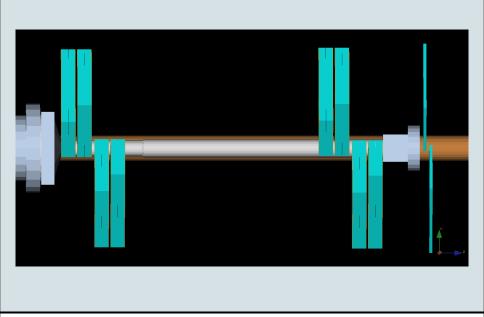
- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

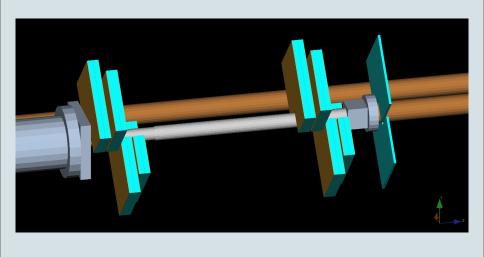

Xml geometry description (DDDB)

- Developed by Quentin and Plamen
- v1r15
 - Fairly realistic BGV geometry description
 - · Looks OK for an initial version
 - Available at:


 $/afs/cern.ch/work/p/phopchev/public/BGVGeo/DDDBSlice_BGV_v1r15$

 At some point, a careful revision of all used materials should be made





- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

Running Gauss

- Needs only option files and the BGV xml geometry (no C++ packages)
- Actions
 - Login to lxplus5 (required by the currently installed version of Gauss)
 - Copy the BGVSim Gauss options files to <your_dir>
 cd <your_dir>
 cp -r /afs/cern.ch/work/p/phopchev/public/BGVSim/GaussOpts_v2/.
 cd GaussOpts v2/workdir/
 - Execute the BGV SW login script and setup for Gauss source /afs/cern.ch/work/p/phopchev/public/LHCbSW/BGVLoginScript.sh SetupProject Gauss v46r2p1
 - Run the Gauss job (the shell script calls gaudirun.py and option files)
 .../go_v46r2p1_args.sh hi 10 7000
 - A .sim file is produced in the current directory
 - The number of simulated events is defined in myJob_v46r2p1.py
 - The error printouts related to Rich1AerogelRegion are not relevant
- \bullet One file of 10K events with $z_{\mathrm{vtx}} \in [0;2000]$ mm is available here:

/afs/cern.ch/work/p/phopchev/public/BGVSim/SimSamples/ gausssim hi 10 7000 geo1r15 10000ev.sim

- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

Overview

- The digitization step is a Gaudi job which converts .sim files to something that looks like the raw data from the real detector
- The possible data output types are:
 - .mdf (only raw data banks, equivalent to .raw)
 - .digi (raw banks + MC info)
 - The possible digi types are: Minimal (MC only for PV-related particles),
 Default and Extended (write also the MCHits)
- Currently the Boole project is used, but even simpler configuration might be possible in the future
- The algorithm MyTestAlg from SciFiDAQ creates SciFiClusters from MCHits and puts them on TES
 - Uses functions defined in DeSciFiLayer from SciFiDet
- The algorithm PrepareSciFiRawBuffer from SciFiDAQ converts the created cluster container to a raw buffer on TES
- A file writer algorithm is run

C++ packages

- Three packages are needed to run the BGV Digitization
 - SciFi / SciFiEvent (Event Model classes)
 - SciFi / SciFiDAQ (Raw bank decoding and encoding + a simple digitization algorithm)
 - SciFi / SciFiDet (Detector element)
- Get them to your cmtuser directory (of a given project, e.g. Boole) and compile them
 - Open a new lxplus5 shell and execute (make sure you don't overwrite something you need when you do the cp command) source /afs/cern.ch/work/p/phopchev/public/LHCbSW/BGVLoginScript.sh setenvProject Boole v26r5

cp -r /afs/cern.ch/work/p/phopchev/public/BGVDigi/SciFi .
cd SciFi/SciFiEvent/cmt/; cmt make (this package should be compiled first)

cd ../../SciFiDet/cmt/; cmt make (this package – second)
cd ../../SciFiDAO/cmt/; cmt make

C++ packages (2)

- A patched version of the Boole package must be used (to insert the BGV digitization sequence in the general Boole sequence)
 - In the same shell, execute:
 cd ~/cmtuser/Boole_v26r5/
 cp -r /afs/cern.ch/work/p/phopchev/public/BGVDigi/Digi .

Running Boole

- Requires consistent xml geometry and .sim file as input
- Execute the following
 - Open a new lxplus5 shell (third, if you executed everything up to now)
 - Copy the BGVDigi option files to <your_dir>

cd <your_dir>

 $cp\ \hbox{-r/afs/cern.ch/work/p/phopchev/public/BGVDigi/DigiOptions}\ .$

cd DigiOptions/

- Execute the BGV SW login script and setup for Boole source /afs/cern.ch/work/p/phopchev/public/LHCbSW/BGVLoginScript.sh
- Run the Boole job (GaudiPython) python -i GP Digi.py

SetupProject Boole v26r5

- A .{mdf,digi} file is produced in the current directory
 - The processing time is different depending on the amount of MC info we write
 - Can change the verbosity of the Sim and Encoding algorithms with their setting OutputLevel
- .mdf and .digi (extended) files of 10K events are available here:

/afs/cern.ch/work/p/phopchev/public/BGVDigi/DigiSamples/

raw-sim1r0-geo1r15-10000ev.{mdf,digi}

- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

Introduction

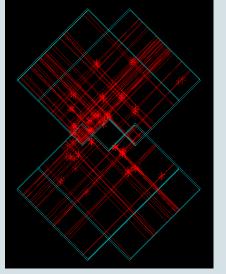
- To read BGV raw data one needs the algorithm DecodeSciFiRawBuffer from SciFiDAQ
- One needs the 3 SciFi packages (Event, Det and DAQ) to be compiled in the project being used
 - i.e. similar steps as given in slide "C++ packages"
- Below are given examples with Panoramix and GaudiPython
 - Usage with gaudirun.py and other projects is similar

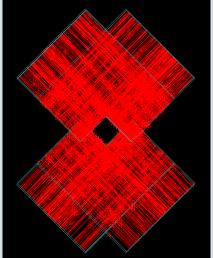
Running the decoding

- Requires consistent xml geometry and .{raw,digi} file as input
 - In principle the decoding can depend on the detector element package (currently not)
- Execute the following
 - Open a new lxplus5 shell
 - Copy the BGVPano option files to <your dir> cd <your dir>
 - cp -r /afs/cern.ch/work/p/phopchev/public/BGVPano/PanoOptsV2. cd PanoOptsV2
 - Execute the BGV SW login script and setup for Panoramix source /afs/cern.ch/work/p/phopchev/public/LHCbSW/BGVLoginScript.sh SetupProject Panoramix v22r0
 - Run the Panoramix job (GaudiPython) only command line, no event display
 - python -i panoCL readRaw v1.pv
 - Some cluster debug printout statements are at the end
 - Can change the verbosity of the Decoding algorithm, see DecodeSciFiRawBuffer.pv

- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

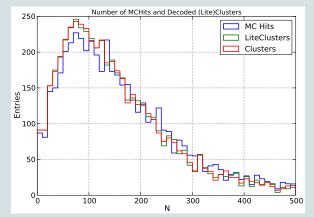
Running an "exploration" job


- The example in the previous section is extended to demonstrate the access to the SciFiCluster information and the different methods that can be applied
- In particular, the method createDetSegment from SciFiDet is demonstrated
 - \bullet It does the transformation Cluster \to Geometrical object, which is needed for the pattern recognition
 - It gives the fiber extremities (two 3D points) of the cluster
- Run the job:
 - If not done already, execute the instructions for running the decoding
 - This time run another GaudiPython script: python -i panoCL checkDigi v1.py
- C++ code examples can be seen in the det. element testing algorithm
 DeSciFiTestAlg.cpp in the SciFiDet package



- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

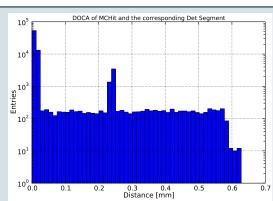
SciFi MCHits and Detector segments (1 and 10 events)



Digitization efficiency

- It is observed that the number of SciFi(Lite)Clusters is a bit lower than the number of MCHits
- Two types of digitization inefficiencies are known
 - In the digitization, the extrapolation of the MCHit along the fiber can end to a place not covered by SiPMs. This happens for stereo layers, because the SiPM offset is not taken into account. Relatively simple to fix. Accounts for about 3 % non-digitized MCHits
 - Sometimes two MCHits are very close to each other. With the
 currently used simple digitization this would create 2 clusters with
 the same channel ID. This is undesired, so the repeating clusters
 are skipped. The fix is to treat this case properly in an improved
 digitization. Accounts for about 5 % non-digitized MCHits

Digitization efficiency (2)


- Average number of MCHits: \approx 170
- Average number of (Lite)Clusters: \approx 160
 - Small difference between Clusters and LiteClusters to be investigated
- Keep in mind that this is an unbiased inelastic beam-gas sample

MCHit ⇔ Cluster position correspondence

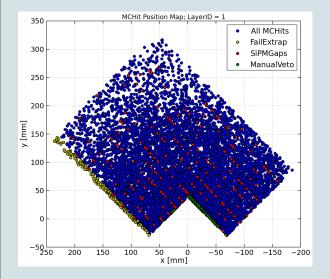
- Digitization check
 - For each MCHit, create the corresponding cluster
 - Then create the detector segment
 - Then check the DOCA of the MCHit and the detector segment

- About 10 % of the MCHits have clusters/det. segments with large DOCA
- Not good, but probably OK for a start
- Will be investigated

- 1 Geometry
- 2 Simulation
- 3 Digitization
- 4 Reading mdf and digi files
- 5 SciFi data and functions
- 6 Notes about the Digi performance
- 7 Update 16/03

Improvements to DeSciFiLayer (1)

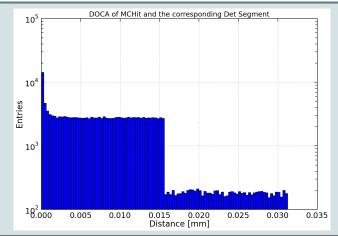
- Found reasons for the "10 % of MCHits with large DOCA"
 - MCHits with displaced midPoint (they cause the flat part in the DOCA plot)
 - Usually the MCHits traverse the whole sensitive layer (thickness = 1.16 mm)
 - Sometimes the entry of the MCHit is "deep" inside the layer, making the MCHit midPoint different from the z center of the layer
 - The observed DOCA is mainly in the z direction which means that created cluster has approximately correct x/y position. By default these MCHits are used in the digitization (no change to the digi packages)
 - Rounding of the inter strip fraction (ISP) to 1/8 (causes the secondary peak at 0.25 mm)
 - Incorrect definition of central ChannelID and fractional offset caused an overflow of 1 ChannelID
 - Now fixed in DeSciFiLayer (method xPosToCellID)



Improvements to DeSciFiLayer (2)

- From the release.notes of SciFi/SciFiDet:
 - Take into account the x offset of the SiPM start for stereo layers.
 Now the variable m_sipmStartX is initialzed to different values for the upright and the stereo layers
 - Added method isActiveRegion to check the stereo layers: is a hit inside the dead region next to the cutout. Modified the method createCluster to discard these MCHits
- Both are related to the fact that our layer xml geometry is not perfect
 - See "FailExtrap" and "ManualVeto" on the next slide
- Note that we don't create clusters for areas not covered by active SiPM cells
 - Currently each SiPM has 1 passive cell (0.25 mm) on each side and at the SiPM center (using SiPM pitch = 32.75 mm)
- Finally, our layer does not cover all the area it should, so we miss some MCHits close to the long side of the layer
 - The effect is \approx 1 %

Hitmap for layerID 1 (stereo layer)



- The MCHits of categories "FailExtrap", "SiPMGaps", and "ManualVeto" are vetoed in the current digitization
- The rest MCHits are converted to SciFiClusters and encoded in the raw bank
- The DOCA of these SciFiClusters is shown on the next slide

Updated MCHit ⇔ **Cluster position correspondence**

- Looks good for an initial version of the digitization
- Note that in principle the distribution should not be peaked at 0, but smeared equally in the [0, 0.031] mm region (1/8th of 0.25 mm)

