Second generation ASICS for CALICE/EUDET calorimeters

C. de LA TAILLE on behalf of the CALICE collaboration
ILC Challenges for electronics

- Requirements for electronics
 - Large dynamic range (15 bits)
 - Auto-trigger on ½ MIP
 - On chip zero suppress
 - Front-end embedded in detector
 - Ultra-low power: (25µW/ch)
 - 10^8 channels
 - Compactness
 - Tracker electronics with calorimetric performance
 - No chip = no detector!!

Ultra-low POWER is the KEY issue
First generation ASICs

- Readout of physics prototypes (ECAL, AHCAL, DHCAL)
 - Front-end ASICs outside the detector
 - Multiplexed analog output: digitization and readout in DAQ crate
 - FLC_PHY3 for SiW ECAL, FLC_SiPM for AHCAL (BiCMOS 0.8µm [LAL-Orsay]) and DCAL for DHCAL (CMOS 0.25 µm [FNAL])
 - Chips described at CALOR2004 and CALOR2006
 - [see also CALOR08 talks by JC Brient, R. Cornat, J. Repond, F. Sefkow, F. Salvatore & E. Garutti]
CALICE Testbeam at DESY, CERN & FNAL

- TCMT
- AHCAL (9,000 ch)
- W-Si ECAL (9,000 ch)
- DHCAL slice test
- Imaging calorimetry
- Common DAQ 16,000 ch
Second generation ASICs

- Add auto-trigger, analog storage, digitization and token-ring readout !!!
- Include power pulsing: <1 % duty cycle
- Address integration issues asap
- Optimize commonalities within CALICE (readout, DAQ...)
 [see talk by V. Bartsch]

ICs:
- FLC_PHY3 (2003)
- SkiROC
- SPIROC

cdlt: 2nd generation ASICs for CALICE/EUDET
Technological prototypes: “EUDET module”

- Front-end ASICs embedded in detector
 - Very high level of integration
 - Ultra-low power with pulsed mode
 - Target « analog friendly » SiGe technology
- All communications via edge
 - 4,000 ch/slab, minimal room, access, power
 - Small data volume (~ few 100 kbyte/s/slab)
- EUDET funding for fab in 2009
- [AHCAL: see talk by F. Sefkow]
- [DHCAL: see talk by I. Laktineh]
EUDET module FEE: main issues

- “stictchable” motherboards
 - Minimize connections between boards

- No external components
 - Reduce PCB thickness to <800µm
 - Internal supplies decoupling

- Mixed signal issues
 - Digital activity with sensitive analog front-end

- Pulsed power issues
 - Electronics stability
 - Thermal effects
 - To be tested in beam a.s.a.p
 -

- Low cost and industrialization are the major goal

"EUDET ECAL module"

Slab exploded view
ECAL detector slab

- Chips bonded on ASU (Active Sensor Units)
- Study connection between ASUs

Short sample

Connection between 2 A.S.U.

Chip embedded

“end” PCB

7 A.S.U.

cdit : 2nd generation ASICs for CALICE/EUDET
Read out: token ring

- Readout architecture common to all calorimeters
- Minimize data lines & power

![Diagram showing the readout architecture for calorimeters]

- Chip 0: Acquisition, A/D conv., DAQ, IDLE MODE
- Chip 1: Acquisition, A/D conv., IDLE, DAQ, IDLE MODE
- Chip 2: Acquisition, A/D conv., IDLE, IDLE MODE
- Chip 3: Acquisition, A/D conv., IDLE, DAQ, IDLE MODE
- Chip 4: Acquisition, A/D conv., IDLE, DAQ, IDLE MODE

- 1ms (0.5%)
- 0.5ms (0.25%)
- 0.5ms (0.25%)
- 199ms (99%)

1% duty cycle 99% duty cycle
The front-end ASICs: the ROC chips

SPIROC
- Analog HCAL (SiPM)
- 36 ch. 32mm²
- June 07

HARDROC
- Digital HCAL (RPC, µmegas or GEMs)
- 64 ch. 16mm²
- Sept 06

SKIROC
- ECAL (Si PIN diode)
- 36 ch. 20mm²
- Nov 06

cdlt: 2nd generation ASICs for CALICE/EUDET
DHCAL chip : HaRDROC

- Hadronic Rpc Detector Read Out Chip (Sept 06)
 - 64 inputs, preamp + shaper + 2 discris + memory + Full power pulsing
 - Compatible with 1st and 2nd generation DAQ: token ring readout of up to 100 chips
 - 1st test of 2nd generation DAQ and detector integration

- Collaboration with IPNL/LLR/Madrid/Protvino/
 - 1m3 scalable detector
 - [see talk by I. Laktineh]
 - Production of 5000 chips in 2009
HaRDROC architecture

- Variable gain (6bits) current preamps (50ohm input)
- One multiplexed analog output (12bit)
- Auto-trigger on ½ MIP
- Store all channels and BCID for every hit. Depth = 128 bits
- Data format: 128(depth) *[2bit*64ch + 24bit(BCID) + 8bit(Header)] = 20kbits
- Power dissipation: 1.5 mW/ch (unpulsed) - > 15µW with 1% cycle
- Large flexibility via >500 slow control settings
S-curves of 64 channels

- 10 bit DAC for threshold,
- Noise ~ 1 UDAC (2mV)
- Pedestal dispersion : 0.4 UDAC rms
- Gain dispersion 3% rms
- Crosstalk : < 2%

50% trigger versus channel number

Pedestal

30 fC

10 fC

Threshold in fC

Trigger Efficiency

Channel number

Dac unit

CDT : 2nd generation ASICs for CALICE/EUDET
Power pulsing: «Awake» time

- PWR ON: ILC like (1ms, 199ms)
- All decoupling capacitors removed: difficult compromise between noise filtering and fast awake time
- Awake time:
 - Analog part = 2 µs
 - DAC part = 25 µs
- 0.5% duty cycle achieved, now to be tested at system level
SKIROC for W-Si ECAL

- Silicon Kalorimeter Integrated Read Out Chip (Nov 06)
 - 36 channels with 15 bits Preamp + bi-gain shaper + autotrigger + analog memory + Wilkinson ADC
 - Digital part outside in a FPGA for lack of time and increased flexibility
 - Technology SiGe 0.35µm AMS. Chip received may 07

1 MIP in SKIROC
12 bit Wilkinson ADC performance

Pedestal value vs Channel number

- Noise in low gain shaper
 - \(\text{rms} = 0.9 \text{U}_{\text{ADC}} \)
 - \((330 \mu \text{V})\)
 - \(\text{MIP} = 3 \text{U}_{\text{ADC}} \)

- Noise in high gain shaper
 - \(\text{rms} = 4 \text{U}_{\text{ADC}} \)
 - \((1.4 \text{mV})\)
 - \(\text{MIP} = 30 \text{U}_{\text{ADC}} \)

CALOR08 Pavia 25 may
cdlt : 2nd generation ASICs for CALICE/EUDET
AHCAL chip : SPIROC

- Silicon Photomultiplier Integrated Read Out Chip
 - A-HCAL read out
 - Silicon PM detector $G=10^5$-10^6
 - 36 channels
 - Charge measurement (15bits)
 - Time measurement (< 1ns)
 - many SKIROC, HARDROC, and MAROC features re-used
 - Submitted in June 07 in SiGe 0.35 µm AMS

- Collaboration with DESY
 - Production in 2009 for Eudet module
 - [see talk by F. Sefkow]
SPIROC main features

• Internal input 8-bit DAC (0-5V) for SiPM gain adjustment
• Energy measurement:
 – 2 gains / 12 bit ADC 1 pe → 2000 pe
 – Variable shaping time from 50ns to 100ns
 – pe/noise ratio : 11
• Auto-trigger on ½ pe
 – pe/noise ratio on trigger channel : 24
 – Fast shaper : ~15ns
 – Auto-Trigger on ½ pe
• Time measurement : 12 bit TDC step ~100 ps
• Analog memory for time and charge measurement : depth = 16
• Low consumption : ~25µW per channel (in power pulsing mode)
• Calibration injection capacitance
• Embedded bandgap for voltage references
• Embedded DAC for trigger threshold
• Compatible with physic prototype DAQ
 – Serial analogue output
 – External “force trigger”
• 12-bit Bunch Crossing ID
• SRAM with data formatting 2 x 2kbytes = 4kbytes
• Output & control with daisy-chain
SPIROC: One channel

Slow Shaper

Analog memory

Gain selection

Depth 16

Charge measurement

HOLD

Fast Shaper

Variable delay

Trigger

Depth 16

DAC output

4-bit threshold adjustment

10-bit DAC

TDC ramp 300ns/5µs

Common to the 36 channels

12-bit Wilkinson ADC

Conversion 80µs

Analog output

Flag TDC

DAC0-5V

8-bit DAC

0-5V

Low gain Preamplifier

1.5pF

High gain Preamplifier

0.1pF-1.5pF

50-100ns

50-100ns

Depth 16

Depth 16

Gain

READ

IN

Discri

4-bit threshold adjustment

DAC output

Common to the 36 channels

10-bit DAC

TDC ramp 300ns/5µs

Calor08 Pavia 25 May

cdit: 2nd generation ASICs for CALICE/EUDET
• Good analog performance
 – Single photo-electron/noise = 8
 – Auto-trigger with good uniformity
 – Complex chip: many more measurements needed

CALOR08 Pavia 25 may
cdlt : 2nd generation ASICs for CALICE/EUDET
Power supplies issues

• A very critical issue !!! As usual, noone’s looking...
• Power supplies won’t be dimensionned for continuous operation, but for 1/100 of the load. Total power : ~2kW, peak value ~200kW !!
• Need local storage (capacitors, even a battery!) on power board and regulators to accomodate large voltage swing
• Simple calculation (ECAL)
 – Slab = 24 000 channels
 – 1 mA/channel unpulsed => 24 A/slab peak, 240mA average
 – With a **24 000µF** capacitor \(\frac{dV}{dt} = 1V/\text{ms} \) => acceptable
Conclusion

- Good progress on 2nd generation ASICs
 - Power pulsing
 - Token-ring readout
 - Integration inside detector
 - Low noise/Large dynamic range

- Production foreseen beg 2009 for technological prototypes
 - Still many integration issues to be studied
 - Crucial for detector feasibility

- 3rd generation chips still to come
 - Alternative ADC designs
 - All channels treated independently
Multi Project Run vs Dedicated Run

- **MPW:** $1k€/mm^2$ => Hardroc $= 25 k€$
 - 25 dies delivered in September 08, to be packaged
 - About 300 dies available (no guaranty): 100 euros/die + packaging
 - Price: $25 k€ + 100 € \times \text{nb_chips}$

- **Engineering run:**
 - Wafer 8” Available area $= 23,000 \text{ mm}^2$
 - 1 reticle $= 20 \times 20 \text{ mm}^2 = 400 \text{ mm}^2$
 - $= 65$ reticles/wafer
 - 16 chips (25 mm2) / reticle $=> 1000$ Hardroc/wafer
 - Cost: $150 k€$ (masks) + $5k€/wafer$
 - Price: $150 k€ + 5 \text{ €} \times \text{nb_chips}$
 - valuable for more than 1250 chips
• Full daisy-chain readout
 - Internal or external Trigger
 - OR36 output
 - Discriminator Validation fast input
 - 4kbyte RAM
 - « Open collector » output signals
 - LVDS clocks
 - Start conversion
 - Start/end readout