Conformal Tracking for all-silicon trackers at future electron-positron colliders

Erica Brondolin (CERN)
erica.brondolin@cern.ch

Seminar at Bristol University - 5th February 2020
Outline

- **Overview**
 Future e^+e^- colliders, detector requirements, tracking challenges

- **Conformal Tracking**
 Conformal mapping, cellular track building and extension

- **Track reconstruction at CLIC**
 CLICdet tracker, event simulation, performance

- **Next steps and conclusions**
Future high-energy e^+e^- colliders

Future Circular Collider (FCC-ee)
- CERN
- e^-e^+, \sqrt{s}: 90 - 365 GeV (followed by pp, \sqrt{s}: ~100 TeV)
- Circumference: 97.75 km

International Linear Collider (ILC)
- Japan (Kitakami)
- e^-e^+, \sqrt{s}: 250 GeV (500 GeV)
- Length: 17 km (31 km)

Compact Linear Collider (CLIC)
- CERN
- e^-e^+, \sqrt{s}: 380 GeV, 1.5 TeV, 3 TeV
- Length: 11 km, 29 km, 50 km

Circular Electron Positron Collider (CEPC)
- China
- e^-e^+, \sqrt{s}: 90 – 240 GeV (followed by pp, \sqrt{s}: ~100 TeV)
- Circumference: ~100 km
Circular vs. linear e^+e^- colliders

Circular colliders
- Can accelerate beam in many turns
- Can collide beam many times
- Possibility of **several interaction regions**
- Limited energy due to **synchrotron radiation**
 - $m_p/m_e \approx 2000$
 - Synchrotron radiation $\sim E^4/(m^4 \cdot \text{Radius})$
- **Beam strahlung**

Linear colliders
- One interaction region
- Operation in bunch trains
- **Very little synchrotron radiation**
- Can reach high energies
- Have to achieve energy in a **single pass**
 - High energy -> High acceleration gradients
 - High luminosity
 - Small beam size and high beam power
 - Beamstrahlung, energy spread

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
Future high-energy e^+e^- colliders

- **Circular colliders:**
 - Large luminosity at lower energies
 - Luminosity decreases with energy

- **Linear colliders:**
 - Can reach the highest energies
 - Luminosity rises with energy
 - Beam polarisation at all energies

- **Circular & linear e^+e^- colliders**
 - Comparable luminosities in overlap region (ZH, tt)

- **NB.** Peak luminosity at LEP2 (209 GeV) was $\approx 10^{32}\text{cm}^{-2}\text{s}^{-1}$
CC experimental conditions

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>FCC-ee (97.8 km)</th>
<th>CEPC (100 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s}</td>
<td>GeV</td>
<td>91.2</td>
<td>160</td>
</tr>
<tr>
<td>Luminosity</td>
<td>10^{34}/cm²·s</td>
<td>230</td>
<td>28</td>
</tr>
<tr>
<td>Bunches/beam</td>
<td></td>
<td>16 640</td>
<td>2 000</td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
<td>20</td>
<td>163</td>
</tr>
<tr>
<td>Beam σ_{xy}, IP</td>
<td>nm/nm</td>
<td>6.4/28</td>
<td>13/41</td>
</tr>
<tr>
<td>Synch. rad. power</td>
<td>MW</td>
<td>≤ 50</td>
<td>≤ 50</td>
</tr>
</tbody>
</table>

At Z peak, high luminosity combined with high e^+e^- cross section
- Achieve very low statistical uncertainties ($\sim 10^{-4} - 10^{-5}$)
 - Drives detector performance req. to match systematic uncertainties
- High number of bunches and small distance between bunches
- Very high data rates (physics rates 100 kHz)
 - Triggerless readout can still be possible

Beam-induced background, from beamstrahlung + synchrotron radiation
- Most significant at 365 GeV
- Mitigated through machine-detector interface design and detector design

Properties and Units

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>FCC-ee (97.8 km)</th>
<th>CEPC (100 km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td></td>
<td>Z (2T)</td>
<td>WW</td>
</tr>
<tr>
<td>WW</td>
<td></td>
<td>WW</td>
<td>ZH</td>
</tr>
<tr>
<td>ZH</td>
<td></td>
<td>ZH</td>
<td></td>
</tr>
<tr>
<td>tt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \sqrt{s}: Energy in GeV
- Luminosity: 10^{34}/cm²·s
- Bunches/beam: Number of bunches in a beam
- Bunch sep.: Bunch separation in ns
- Beam σ_{xy}, IP: Beam size in nm/nm
- Synch. rad. power: Synchrotron radiation power in MW
LC experimental conditions

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>ILC</th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>√s</td>
<td>GeV</td>
<td>250</td>
<td>250(Upg.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>380(Upg.)</td>
</tr>
<tr>
<td>Site length</td>
<td>km</td>
<td>31</td>
<td>20.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.5/31</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.4</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29.0</td>
<td>50.1</td>
</tr>
<tr>
<td>Luminosity</td>
<td>10^{34}/cm^{2} s</td>
<td>1.35</td>
<td>2.7/5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8/3.6</td>
<td>1.5/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5/3</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7</td>
<td>5.9</td>
</tr>
<tr>
<td>Train rep. rate</td>
<td>Hz</td>
<td>5</td>
<td>5/10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>50/100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50/100</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>BX / train</td>
<td></td>
<td>1312</td>
<td>2625</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1312/2625</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>356</td>
<td>312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>312</td>
<td>312</td>
</tr>
<tr>
<td>Duty cycle</td>
<td></td>
<td>3.6</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.6/7.2</td>
<td>0.0089/0.0078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0089/0.0078</td>
<td>0.0078</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0078</td>
<td>0.0178</td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
<td>544</td>
<td>272</td>
</tr>
<tr>
<td></td>
<td></td>
<td>544/272</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Beam σ_{xy}, IP</td>
<td>nm/nm</td>
<td>516/7.7</td>
<td>516/7.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>474/5.9</td>
<td>149/2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149/2.9</td>
<td>-60/1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-60/1.5</td>
<td>-40/1</td>
</tr>
<tr>
<td>Beam σ_{z}, IP</td>
<td>µm</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

ILC: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%,
CLIC: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization
Linear colliders operate in **bunch trains**:

- Low duty cycle
- Possibility of power pulsing of detectors and triggerless readout
- Bunch separation → Impact on detector design (timing, granularity)

Example: CLIC@3TeV

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>ILC</th>
<th>CLIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqrt{s}</td>
<td>GeV</td>
<td>250</td>
<td>250 (Upg.)</td>
</tr>
<tr>
<td>Site length</td>
<td>km</td>
<td>31</td>
<td>20.5</td>
</tr>
<tr>
<td>Luminosity</td>
<td>10^{34}/cm2 s</td>
<td>1.35</td>
<td>2.7/5.4</td>
</tr>
<tr>
<td>Train rep. rate</td>
<td>Hz</td>
<td>5</td>
<td>5/10</td>
</tr>
<tr>
<td>BX / train</td>
<td></td>
<td>1312</td>
<td>2625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Duty cycle</th>
<th>Bunch sep.</th>
<th>Beam σ_{xy}, IP</th>
<th>Beam σ_z, IP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ns</td>
<td>nm/nm</td>
<td>µm</td>
</tr>
<tr>
<td>ILC</td>
<td>3.6</td>
<td>516/7.7</td>
<td>300</td>
</tr>
<tr>
<td>CLIC</td>
<td>7.2</td>
<td>516/7.7</td>
<td>300</td>
</tr>
<tr>
<td>Upgrade</td>
<td>3.6/7.2</td>
<td>474/5.9</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>149/2.9</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-60/1.5</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>∼40/1</td>
<td>44</td>
</tr>
</tbody>
</table>

ILC: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%,
CLIC: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization
LC Experimental Conditions

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>√s</td>
<td>GeV</td>
</tr>
<tr>
<td>Site length</td>
<td>km</td>
</tr>
<tr>
<td>Luminosity</td>
<td>10^{34}/cm² s</td>
</tr>
<tr>
<td>Train rep. rate</td>
<td>Hz</td>
</tr>
<tr>
<td>BX / train</td>
<td></td>
</tr>
<tr>
<td>Duty cycle</td>
<td></td>
</tr>
<tr>
<td>Bunch sep.</td>
<td>ns</td>
</tr>
<tr>
<td>Beam σₓᵧ, IP</td>
<td>nm/nm</td>
</tr>
<tr>
<td>Beam σ², IP</td>
<td>µm</td>
</tr>
</tbody>
</table>

- **ILC**: Crossing angle 14 mrad, electron polarization ±80%, positron polarization ±30%.
- **CLIC**: Crossing angle 20 mrad, electron polarization ±80%, upgrade positron polarization.

Example

Incoherent e⁺e⁻ pairs → beamstrahlung

\[\gamma \gamma \rightarrow \text{hadrons} \]

- CLICcap: 3 TeV
- γγ → hadrons

![Beamstrahlung Diagram](image)

Detector Requirements for Future High-Energy Collider Experiments

- Eva Sicking - 27th Jan 2020
Detector requirements

Physics analysis requirements:

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_E/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - $\sigma_{r\phi} \sim a \oplus b / (p[\text{GeV}] \sin^{3/2} \theta) \mu\text{m}$
 - with $a = 5 \mu\text{m}$, $b = 15 \mu\text{m}$
- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10$ mrad ($\eta = 5.3$)
Detector requirements

Physics analysis requirements:

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p^2_T \sim 2 \times 10^{-5}$ GeV$^{-1}$ above 100 GeV

- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_E/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV

- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - $\sigma_{r\phi} \sim a \oplus b/(p[GeV] \sin^{3/2} \theta) \text{ \(\mu\text{m}\)}$
 with $a = 5 \text{ \(\mu\text{m}\)}$, $b = 15 \text{ \(\mu\text{m}\)}$

- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10 \text{ mrad}$ ($\eta = 5.3$)

+ Requirements from beam structure and beam-induced background

Example: Higgs $\rightarrow \mu^\pm\mu^\mp$ @3TeV

Example: W/Z separation
Detector requirements

Physics analysis requirements:
- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5}$ GeV$^{-1}$ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_E/E \sim 5\% - 3.5\%$ for jets at 50 GeV – 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs
 - $\sigma_{r\phi} \sim a \oplus b / (p[GeV] \sin \theta/2)$ μm
 - with $a = 5$ μm, $b = 15$ μm
- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10$ mrad ($\eta = 5.3$)

+ Requirements from beam structure and beam-induced background

Differences between ILC, CLIC, FCC-ee, CEPC requirements rather small

Impact on detector designs:
- Shielding
- Granularity
- Timing
- Cooling

Example: Higgs → $\mu^-\mu^+$ @3TeV

Example: W/Z separation
Tracking challenges

- #reco tracks without (with) background ~ $O(100)$ $O(500-1000)$

- **Physics requirements:**
 - Momentum resolution
 - Impact parameter resolution
 - Best possible angular coverage
 - Beam structure
 - Background rejection

- **Tracker requirement:**
 - Low material budget tracker
 - High spatial resolution
 - Low occupancy ~3% → High granularity
 - No or $O(1\text{ ns})$ timing requirement
Tracking challenges

- #reco tracks without (with) background ~ $O(100)$ $O(500-1000)$

- Physics requirements:
 - Momentum resolution
 - Impact parameter resolution
 - Best possible angular coverage
 - Beam structure
 - Background rejection

- Detector technologies:
 - strong R&D programme

- Software reconstruction:
 - flexible and efficient tracking algorithm

- Computing infrastructure:
 - computing resources

- Tracker requirements:
 - Low material budget
 - High spatial resolution
 - Low occupancy ~3% → High granularity
 - No or $O(1\text{ ns})$ timing requirement

Example: CLIC@3TeV
Proposed e^+e^- collider detectors

E_{CM} up to 3 TeV
3.5 - 5 T solenoids

CLIC: CLICdet

CLIC: CLICdet

E_{CM} up to 365 GeV
2 - 3 T solenoids

FCC-ee: CLD

FCC-ee & CEPC: IDEA

ILC: SiD

ILC: ILD

CEPC: APIDOS

E CM up to 3 TeV
3.5 - 5 T solenoids

E_{CM} up to 365 GeV
2 - 3 T solenoids
Proposed e^+e^- collider detectors

- **E_{CM} up to 3 TeV**
 - 3.5 - 5 T solenoids
 - CLIC: CLICdet
 - ILC: SiD
 - ILC: ILD

- **E_{CM} up to 365 GeV**
 - 2 - 3 T solenoids
 - FCC-ee: CLD
 - CEPC: APIDOS

Track reconstruction software:
- Flexible (different geometries, ...)
- Robust (different beam-backgrounds, ...)
- All-silicon tracker
Conformal Tracking for future e⁺e⁻ colliders

Erica Brondolin (erica.brondolin@cern.ch)

Bristol University, 5th Feb 2020
Conformal Mapping

- The conformal mapping method is based on the fact that circles passing through the origin of a coordinate system xy can be translated onto straight lines in a new coordinate system uv

\[u = \frac{x}{x^2 + y^2} \quad v = \frac{y}{x^2 + y^2} \]
The conformal mapping method is based on the fact that circles passing through the origin of a coordinate system xy can be translated onto straight lines in a new coordinate system uv

\[u = \frac{x}{x^2 + y^2} \quad v = \frac{y}{x^2 + y^2} \]
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

1) Define seed hits
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour \((\Delta \theta, \Delta z)\)
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate

- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
- Seed cell is extrapolated along seed direction
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

2) Create cellular track candidate
- Define hit neighbour ($\Delta \theta, \Delta z$)
- Seed cell is created if hit neighbour:
 - not lie in same det layer
 - located at smaller conf radius
 - hit not used already in other cellular track
- Cell is created with associated weight
 - subsequent link increments the weight by 1
- Cell can be discarded, if too long in uv
- Seed cell is extrapolated along seed direction
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

3) Select best candidates
- Starting from higher weight back to the seed cell
 - For all cellular tracks stemming from the seed hit
 - Hits progressively removed one by one
 - Linear regression fit in (u,v) χ^2_{uv}/ndf
 - Linear regression fit in (s,z) $\rightarrow \chi^2_{sz}/\text{ndf}$
 - Where s is arc segment along the helix
 - Reject or accept hit according to total χ^2_{tot}
- Clone treatment
 - Clones if #overlapping hits >= 2
 - Longest track is kept
 - If same length, small χ^2_{tot}

4) Mark hits in cellular track as used
Cellular tracks reconstruction

- Cell is a segment between two hits with a weight associated
- Cellular tracks are vectors of cells
- Two steps:
 - Building of cellular track candidates
 - Extension of cellular track candidates

1) Estimation of p_T with conformal formulas
2) Tracks with higher-p_T are extended first
 - Similar process than building (search for neighbours layer by layer)
 - Best hit is chosen based on smallest χ^2_{tot}
 - Mark hits as used
3) Tracks with lower p_T
 - All hits are used (no cut in θ)
 - Quadratic terms in χ^2_{uv} fit added
Track reconstruction at CLIC
The CLICdet tracker

- Superconducting solenoid with 4T magnetic field
- Vertex detector
 - 25 × 25 µm² pixels
 - 3 double layers in barrel
 - Spiral arrangement in forward region
 - Air cooling
 - Extremely accurate and light:
 - Single point resolution = 3 µm
 - Material Budget < 0.2 % X_0 per layer
- Silicon Tracker
 - Large pixels/strips
 - Outer R ~ 1.5 m
 - Single point resolution = 7 µm × 90 µm
 - Material budget:
 - Detector: ~1%X_0 per layer
 - Support & cables: ~2.5%X_0
 - Precise timing for background rejection:
 - < 10 ns hit time-stamping in tracking
- Full simulation with DD4hep geometry
The CLICdet tracker

- Superconducting solenoid with 4T magnetic field
- Vertex detector
 - 25 × 25 µm² pixels
 - 3 double layers in barrel
 - Spiral arrangement in forward region
 - Air cooling
 - Extremely accurate and light:
 - Single point resolution = 3 µm
 - Material Budget < 0.2% X_0 per layer
- Silicon Tracker
 - Large pixels/strips
 - Outer R ~ 1.5 m
 - Single point resolution = 7 µm × 90 µm
 - Material budget:
 - Detector: ~1%X_0 per layer
 - Support & cables: ~2.5%X_0
 - Precise timing for background rejection:
 - < 10 ns hit time-stamping in tracking
- Full simulation with DD4hep geometry
How does an “event” look like?

Event display

\[e^+e^- \rightarrow tt \text{ at } 380 \text{ GeV} \]

+ Background overlay

(10 (20) BX before (after) physics event)
How does an “event” look like?

Event display
\(e^+e^- \rightarrow tt \ @ \ 3 \ TeV\)
+ Background overlay
(10 (20) BX before (after) physics event)
Conformal tracking in CLICdet

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hit collection</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build tracks</td>
<td>Vertex barrel</td>
<td>Standard cuts</td>
</tr>
<tr>
<td>Extend tracks</td>
<td>Vertex endcap</td>
<td>Standard cuts</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex</td>
<td>Looser cuts (angle x 5)</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex</td>
<td>Looser cuts (angle x 10; (\chi^2) x 20)</td>
</tr>
<tr>
<td>Extend tracks</td>
<td>Tracker</td>
<td>Looser cuts (angle x 10; (\chi^2) x 20)</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex + Tracker</td>
<td>Displaced cuts</td>
</tr>
</tbody>
</table>

- **5 steps targeting prompt-tracks:**
 - From vertex detector to silicon tracker
 - Min number of hits = 4
 - Standard or looser (angle or \(\chi^2\)) cuts
- **1 step targeting displaced tracks:**
 - Quadratic terms in conformal space fit added
 - Inverted order search: from silicon tracker to vertex detector
 - Broader search angle than for prompt tracks
 - Min number of hits = 5

Erica Brondolin (erica.brondolin@cern.ch)
Conformal Tracking for future e^+e^- colliders
Bristol University, 5th Feb 2020
Conformal tracking in CLICdet

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hit collection</th>
<th>Configuration</th>
<th>Build tracks</th>
<th>Vertex barrel</th>
<th>Standard cuts</th>
<th>Vertex endcap</th>
<th>Standard cuts</th>
<th>Build tracks</th>
<th>Vertex</th>
<th>Looser cuts (angle x 5)</th>
<th>Build tracks</th>
<th>Vertex</th>
<th>Looser cuts (angle x 10; χ^2 x 20)</th>
<th>Build tracks</th>
<th>Tracker</th>
<th>Looser cuts (angle x 10; χ^2 x 20)</th>
<th>Build tracks</th>
<th>Vertex + Tracker</th>
<th>Displaced cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- 5 steps targeting prompt-tracks:
 - From vertex detector to silicon tracker
 - Min number of hits = 4
 - Standard or looser (angle or χ^2) cuts

- 1 step targeting displaced tracks:
 - Quadratic terms in conformal space fit added
 - Inverted order search: from silicon tracker to vertex detector
 - Broader search angle than for prompt tracks
 - Min number of hits = 5

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
Track fitting and selection

- **Track fit**
 - It consists of a Kalman filter (KF) and smoother in global coordinate space
 - **Pre-fit step:**
 - Helix prefit with three hits (first, middle, last) gives track state to initialize fit
 - KF fit proceeds forward
 - Hits added one by one
 - Hit is acceptance/rejected based on a χ^2 cut
 - Only in the case of failed fit, the KF is tried again in a backward fashion
 - Packages used:
 - KalTest: iterative Kalman filter
 - DDKalTest: DD4hep - KalTest = interface to provide surfaces

- **Track selection**
 - Clone treatment is repeated one last time
 - Minimum number of hits = 4
Performance
Performance (some definitions)

Associated particle = Simulated MC particle from which the majority of track hits are originated

Reconstructable particle = stable MC particle with following requirements:
- $p_T > 0.1$ GeV
- $|\cos\theta| < 0.99$
- unique hits ≥ 4

Purity = Number of track hits associated to the same MC particle
- **Pure track** if purity ≥ 75 %
- **Fake track** if purity < 75%

Efficiency = $\frac{\text{#pure tracks associated to MC particle}}{\text{#reconstructable MC particles}}$

Fake rate = $\frac{\text{#fake reconstructed tracks}}{\text{#reconstructed tracks}}$
Performance for isolated particles

Isolated muons

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV
Performance for isolated particles

Isolated electrons

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
Performance for isolated particles

Isolated pions

- Tracking fully efficient in the entire tracker volume and at any transverse momentum more than 0.1 GeV
Isolated muons, displaced

Tracks generated uniformly along y-axis with given opening angle

- Tracking fully efficient down to 340 mm
- Sharp drop expected due to the requirement on the number of hits
- Full coverage for b-decay

vertex $R = \text{particle production vertex radius}$
Performance for isolated particles

Isolated muons

- Very good agreement with target values of required physics performance
Performance for isolated particles

Isolated muons, detector optimisation

Conformal Tracking for future e+e− colliders

Erica Brondolin (erica.brondolin@cern.ch)

Bristol University, 5th Feb 2020
Performance for complex events

- Similar performance w/ and w/o background
- Efficiency > 98% in the entire tracker volume
- Fully efficient for simulated MC particles with $p_T > 1$ GeV
- Efficiency > 90% down to 200 MeV
Performance for complex events

tt events @ 3 TeV

- Similar performance w/ and w/o background
- Fully efficient in vertex region
- 1% inefficiency for very small distance between particles

\[\Delta_{MC} \text{ [rad]} \]

\[\text{vertex } R = \text{ particle production vertex radius} \]

\[\Delta_{MC} = \text{ minimum distance between particle associated to the track and any other} \]
Performance for complex events

tt events @ 3 TeV

- Similar performance w/ and w/o background
- Fake rate about per-cent level
- Small increase for tracks with low p_T
Performance for complex events

di-jet events @ 500 GeV

- Reconstructed tracks and Pandora Particle Flow Objects (PFOs) are used as input to the vertex reconstruction and jet clustering.
- For CLICdet, LCFIPlus software package is used for the vertex fitting, jet clustering and flavor tagging.

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e^+e^- colliders

Bristol University, 5th Feb 2020
CPU execution time

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Hit collection</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build tracks</td>
<td>Vertex barrel</td>
<td>Standard cuts</td>
</tr>
<tr>
<td>Extend tracks</td>
<td>Vertex endcap</td>
<td>Standard cuts</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex</td>
<td>Looser cuts (angle x 5)</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex</td>
<td>Looser cuts (angle x 10; χ^2 x 20)</td>
</tr>
<tr>
<td>Extend tracks</td>
<td>Tracker</td>
<td>Looser cuts (angle x 10; χ^2 x 20)</td>
</tr>
<tr>
<td>Build tracks</td>
<td>Vertex + Tracker</td>
<td>Displaced cuts</td>
</tr>
</tbody>
</table>

One core used with 27.5 DB12 machine

Average of 25 event of single tt without (with) overlay:
- #reco tracks = ~ 90 (550)
- ~10 sec (~340 sec) for single tt event without (with) overlay

- For events **without** overlay, the **KF filter** is the most time consuming part
- For events **with** overlay, the **build tracks** step is the most time consuming part
- **Step 5** is the most time consuming part:
 - For events without overlay, ½ of total build tracks process
 - For events with overlay, ¾ of total build tracks process
Conformal tracking @ CLD

- CLD detector configuration
 - Smaller magnetic field 4 T → 2 T
 - Larger tracker 1.5 m → 2.15 m
 - Smaller beam-pipe 29 mm → 15 mm
- Tuning pattern recognition parameters
- Using DD4hep detector description
Next steps

- Conformal tracking completed its **initial phase**

- Further developments and ideas:
 - Non-homogeneous magnetic field
 - Soft hit-to-track assignment
 - Test performance w/ other backgrounds
 - Further CPU time optimisation
 - Multi-core usage mode
 - Tuning of parameters for displaced and low p_T particles
 - Hit time information in pattern recognition
 - ...

Erica Brondolin (erica.brondolin@cern.ch)

Conformal Tracking for future e$^+e^-$ colliders

Bristol University, 5th Feb 2020
Summary & conclusions

- Future e^+e^- colliders tracking challenges are fertile ground for new ideas:
 - Physics requirements are interesting
 - Beam-induced background not negligible
 - Moreover, detector is available in full simulation

- The conformal tracking provides robust solution for pattern recognition
 - Works in single particle as well as complex events
 - Performs well with displaced tracks
 - Can cope successfully with beam induced backgrounds

- The conformal tracking is flexible
 - Successfully handles different detector geometries
 - Possible to include new iteration easily

- Comprehensive article published recently:
Backup

“My own visions of CLIC”, artwork by Natasha de Heney, 2010
The CLIC project

- **CLIC = Compact Linear Collider**
- **High-energy linear e^+e^- collider**
- **CLIC would be implemented in three energy stages (7-8 years each)**
 - Centre-of-mass energy from 380 GeV up to 3 TeV
 - Constructing next stage while taking data with current stage

- **Physics programme extends over 25–30 years:**
 - Precision measurement of Higgs boson and top quark
 - Precision measurement of new physics (discovered at LHC, CLIC, ...)
 - Search for physics Beyond Standard Model (BSM)

Possibility to adapt the stages to new LHC discovery!
CLIC staging

- **Electron polarisation:**
 - ±80% longitudinal polarization for the electron beam
 - Enhances Higgs production at high-energy stages
 - Helps to characterise new particles in case of discovery

- **Luminosity spectrum:**
 - Effect is dependent on \sqrt{s}
 - Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV
 - Most of the analyses use the entire lumi spectrum

- **Baseline scenario:**

 ![Baseline scenario diagram](image-url)
Challenges for Vertex & Tracker

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Compact Linear Collider</th>
<th>(HL-) LHC (ATLAS/CMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material budget (barrel)</td>
<td>1 – 2% X0 (vertex)</td>
<td>10 – 15% X0 (vertex)</td>
</tr>
<tr>
<td></td>
<td>8 – 15% X0 (tracker)</td>
<td>30 – 40% X0 (tracker)</td>
</tr>
<tr>
<td>Single-point resolution</td>
<td>3 µm (vertex)</td>
<td>5 µm (vertex)</td>
</tr>
<tr>
<td></td>
<td>7 µm (tracker)</td>
<td>30 µm (tracker)</td>
</tr>
<tr>
<td>Time resolution</td>
<td>5 ns</td>
<td>25 ns (1 BX)</td>
</tr>
<tr>
<td>Tracking acceptance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min. granularity (occupancy)</td>
<td>≤ 25 µm x 100 µm</td>
<td>50 µm x 50 µm</td>
</tr>
<tr>
<td>Active area</td>
<td>~1 m² / ~137 m²</td>
<td>~5 - 10 m² / ~200 m²</td>
</tr>
<tr>
<td>Radiation tolerance</td>
<td>< 10¹¹ n_{eq} / cm² (vertex)</td>
<td>O(10¹⁶ n_{eq} / cm²) (vertex)</td>
</tr>
</tbody>
</table>
Hybrid pixel detectors

- Sensor and readout chip developed independently
- Small pixel cell sizes achievable down to 25μm
- Extensive functionality w/ mixed CMOS circuits
- Bump bonding
 - Cost-driving factor on detector production
 - Limiting factor for the pixel pitch
 - Limiting factor for device thickness: stability

Monolithic pixel detectors

- Sensor and readout produced together
- Example shown here: “High-Resistivity CMOS Sensors”
- Suitable for large-scale systems
- Low material budget, no bump-bonding
 - Facilitated production and reduced cost
- Additional engineering required to separate bias voltage from CMOS voltage
The CLICpix2 prototype

- Example of hybrid pixel detector
- Readout ASIC to meet CLIC vertex requirements
- Timepix/Medipix chip family
 - 128 x 128 pixels (3.2 x 3.2 mm² active area)
 - 65nm CMOS, 25μm x 25μm pitch
 - Per-pixel 5-bit ToT and 8-bit ToA

- Challenge: single-chip bonding of sensors with 25μm pitch
- Promising results from first beam tests
 - Spatial resolution $\sigma_x \sim 5$ μm (130 μm sensor thickness), characterization ongoing
- However, with thin sensors (50 μm) target resolution of 3 μm not achievable at 25 μm pitch
The CLICTD prototype

- Example of monolithic pixel detector
- Fully-integrated sensor for CLIC Tracking Detector
- 180 nm CMOS + High-Resistivity (HR) epitaxial layer
 - 16 x 128 pixels (4.8 x 3.84 mm2 active area)
 - Geometry with 8 sub-pixels with 30 μm x 37.5 μm pitch each
 - Per-pixel 5-bit ToT and 8-bit ToA
- Just finished first test beam campaign at DESY
 - Very successful – correlations (space and time) from day 1
 - Currently analyzing data

Online DQM
Power and energy

- Power estimate redone bottom-up for 380GeV CLIC
- Total power: **168 MW**
- Much reduced compared with CDR, from optimised drive-beam complex, more efficient klystrons and injectors, and better estimates of nominal conditions

- CERN’s current energy consumption is approximately 1.2 TWh per year (LHC accounts for 90%)
Cost

- Machine recosted bottom-up in 2017–18
- Total cost for 380 GeV stage: **5.9 BCHF**
- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of main linac)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of main linac)

<table>
<thead>
<tr>
<th>System</th>
<th>Cost fraction</th>
<th>Cost[MCHF]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Silicon Tracker</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>Electromagnetic Calorimeter</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>Hadronic Calorimeter</td>
<td></td>
<td>39</td>
</tr>
<tr>
<td>Muon System</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Coil and Yoke</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>397</td>
</tr>
</tbody>
</table>

Main-Beam Production		
Injectors		175
Damping Rings		309
Beam Transport		409
Drive-Beam Production		
Injectors		584
Frequency Multiplication		379
Beam Transport		76
Main Linac Modules		
Main Linac Modules		1329
Post decelerators		37
Main Linac RF		
Main Linac Xband RF		
Beam Delivery and Post		
Delivery Systems		52
Final focus, Exp. Area		22
Post-collision lines/dumps		47
Civil Engineering		
Electrical distribution		243
Survey and Alignment		194
Cooling and ventilation		443
Transport / installation		38
Machine Control, Protection		
and Safety systems		
Safety systems		72
Machine Control Infrastructure		146
Machine Protection		14
Access Safety & Control System		23
Total (rounded)		**5890**
Schedule

2013 – 2019
Development Phase
Development of a project plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 – 2025
Preparation Phase
Finalisation of implementation parameters, preparation for industrial procurement, pre-series and system optimisation studies, technical proposal of the experiment, site authorisation

2026 – 2034
Construction Phase
Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2020
Update of the European Strategy for Particle Physics

2026
Ready for construction

2035
First collisions
A landscape for colliders in Europe

<table>
<thead>
<tr>
<th></th>
<th>2020-2040</th>
<th>2040-2060</th>
<th>2060-2080</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st gen technology</td>
<td>2nd gen technology</td>
</tr>
<tr>
<td>CLIC-all</td>
<td>HL-LHC</td>
<td>CLIC380-1500</td>
<td>CLIC3000 / other tech</td>
</tr>
<tr>
<td>CLIC-FCC</td>
<td>HL-LHC</td>
<td>CLIC380</td>
<td>FCC-h/e/A (Adv HF magnets) / other tech</td>
</tr>
<tr>
<td>FCC-all</td>
<td>HL-LHC</td>
<td>FCC-ee (90-365)</td>
<td>FCC-h/e/A (Adv HF magnets) / other tech</td>
</tr>
<tr>
<td>LE-to-HE-FCC-h/e/A</td>
<td>HL-LHC</td>
<td>LE-FCC-h/e/A (low-field magnets)</td>
<td>FCC-h/e/A (Adv HF magnets) / other tech</td>
</tr>
<tr>
<td>LHeC-FCC-h/e/A</td>
<td>HL-LHC + LHeC</td>
<td>LHeC</td>
<td>FCC-h/e/A (Adv HF magnets) / other tech</td>
</tr>
</tbody>
</table>

- All elements related to the CLIC, FCC and LHeC proposals are discussed in their CDRs.
- The LE-to-HE-FCC-h/e/A scenario moves from initially lower-field magnets to higher-field magnets, potentially HTS magnets.
- The LHeC+FCC-h/e/A scenario includes the LHeC and foresees FCC-h/e/A at a later stage directly with high-field magnets.
CLIC input to European Strategy Update

- Yellow Reports:
 - CLIC 2018 Summary Report
 - CLIC Project Implementation Plan
 - The CLIC Potential for New Physics
 - Detector technologies for CLIC

- Two formal ESU submissions:
 - Physics Potential
 - Accelerator and Detector

- Many more Journal publications and CLICdp Notes

- Full list can be found in: http://clic.cern/european-strategy