EMI Data, the Introduction

Patrick Fuhrmann (DESY)
EMI Data Area lead
People

- Alejandro Alvarez
- Alex Sim
- Claudio Cacciari
- Christian Loeschen
- Dirk Duellmann
- Elisabetta Ronchieri
- Fabrizio Furano
- Giuseppe Fiameni
- Giacinto Donvito
- Giuseppe Lo Presti
- Jon Kerr Nilsen
- Jan Schaefer
- Jean-Philippe Baud
- Michele Carpene
- Michele Dibenedetto
- Michail Salichos
- Mischa Salle
- Oscar Koeroo
- Oliver Keeble
- Paul Millar
- Ralph Mueller-Pfefferkorn
- Ricardo Rocha
- Riccardo Zappi
- Tigran Mkrtchyan
- Zsolt Molnar
- Zsombor Nagy

Our wiki: https://twiki.cern.ch/twiki/bin/view/EMI/EmiJra1T3Data
Outline

- EMI in the European FP7 context.
- What is EMI doing?
- Why are we doing this?
 - **EMI Data** in the EMI context.
- When are we doing what?
- What is EMI Data doing in particular?
- Some selected topics.
- Conclusions
EMI Factsheet

- **Budget**: about 24 Million Euros
- **Funding**: about 50% by EU-FP7, rest by partners
- **Covers**: JRA, SA and NA
- **Partners**: 22
- **Middlewares**: Arc, gLite, UNICORE and dCache

16/09/2010

EMI Overview - EGI Tf, Amsterdam

Oct 19, 2010

EMI Data, the Introduction. CHEP’10, Taipei, TW
Why

According to our Project Director, Alberto Di Meglio:

The European Middleware Initiative (EMI) project represents a close collaboration of the major European middleware providers - ARC, gLite, UNICORE and dCache - to establish a sustainable model to support, harmonise and evolve distributed computing middleware for deployment in EGI, PRACE and other distributed e-Infrastructures.
EMI in context

Stolen from Alberto Di Meglio

EGI, PRACE, WLCG, OSG

Requirements
SLAs & Support
Releases

EMI

Collaborations

ESFRI, VRCs

Standards Industry

DCI collaborations

StratusLab
VENUS-C
SIENA
EDGI
IGE

Oct 19, 2010
EMI Data, the Introduction. CHEP’10, Taipei, TW
What is EMI doing

EMI Middleware Evolution

Before EMI

3 years

After EMI

Applications
Integrators, System Administrators

Specialized services, professional support and customization

EMI Reference Services

Standards, New technologies (clouds) Users and Infrastructure Requirements

Stolen from Alberto Di Meglio

EMI Data, the Introduction. CHEP’10, Taipei, TW
Why again?

Why are WE doing this?

Because with EMI we got the money and the organizational infrastructure to achieve goals, which we were planning to do anyway but didn’t find time nor money yet, e.g.:

- Moving towards standards
 - https / webDav
 - NFS 4.1
 - SRM
- Fixing flaws
 - Catalogue synchronization
- Improving usability
 - Storage Accounting
 - Monitoring Interface
 - Individual efforts of product teams of components
When will it happen?

Release Plan

Start | EMI 0 | EMI 1 | EMI 2 | EMI 3

01/05/2010 | 31/10/2010 | 30/04/2011 | 30/04/2012 | 28/02/2013

Major releases

Support & Maintenance

Support & Maintenance

Support & Maintenance

Stolen from Alberto Di Meglio

See Alberto Aimar’s presentation for details (yesterday)

01/05/2010
31/10/2010
30/04/2011
30/04/2012
28/02/2013

01/05/2010
31/10/2010
30/04/2011
30/04/2012
28/02/2013
EMI Data in context

EMI Data, the Introduction. CHEP’10, Taipei, TW
How does EMI Data contribute.
EMI workplan (activities)

- WLCG ARC
 - Catalogue Synchronization
 - DATA client Library consolidation
- ARGUS Integration
- SECURITY
 - SRM Security
- EMI DATA
 - UNICORE Integration
 - GLUE 2.0
 - Storage Accounting
 - SRM Spec Simplification
- Standards
 - NFS 4.1
 - http(s) WebDav
- Standardization
 - OGF IETF
Standardization efforts
The EMI SE bundle

Access
- Data
- Name Space
- Control

Storage Control
- dCache
- StoRM (Storage Resource Manager)
- DPM

Storage Layer
- Storage Control
- Storage Access
- Storage Monitoring

Custodial Layer
- Monitoring
- Accounting
- API

Control
- SRM
- NFS 4.1
- Posix
- WebDav
- http(s)
- gsi
- FTP
- Namespace API

Name Space
- Monitoring
- Accounting
- API

Access
- Data
- Name Space
- Control
WebDav

- Very useful for new (non-LHC) communities.
- Already available in dCache.
- Will be added to StoRM and DPM after EMI-1.
- Allows “File system like” access with
 - Mac OS
 - Linux
 - Windows
Standardization: NFS 4.1 (pNFS)

- NFS 4.1 (pNFS): industry standard (defined by IETF)
- Genuine POSIX access through mounted file system.
- pNFS supports highly distributed data sources.
- Clients provided and maintained by OS.
- Will be used by industry heavyweights: IBM, EMC, Panasas...
- Production dCache 1.9.10; beta in DPM; considered for StoRM
Standardization : NFS 4.1 (pNFS)

Ongoing NFS evaluation with dCache

Stability (Hammercloud)

Overall Efficiency

7360

46

Simple I/O ‘cat … >/dev/null

Draft, please see Yves

Presentation tomorrow

NFS 4.1

dCap
SRM is a remote *storage management* protocol.

The SRM does:
- Transfer protocol negotiation
- Name space operations
- Space management
- Storage Management: access latency, retention policy (tape, disk,...)
- Allows bulk operations.

- Specification not easy to understand by customers.
- Spec might need a cleanup based on our experience.
- Better documentation from user perspective.
- The SRM is an extremely useful and btw the only tool to remotely manage data in a standardized way across SE’s.
Standardization : SRM, security

- Right now : GLOBUS : library and protocol (non standard)
- Goal : replacing GSI by SSL/TLS-X509
- Step I :
 - No delegation (srmcp)
 - GLOBUS library in SSL compatibility mode.
 - Prove of concept done : dCache SRM server and client.
- Step II
 - No delegation.
 - Server and client can use standard java/openssl libraries.
- Step III
 - Agreement on delegation service : done GDS
 - Agreements in progress 😊
 - Who tells to create delegated proxy : client or server
 - How does the server tell the client w/o changing the WSDL
 - Where do we store the delegation ID (w/o WSDL change)
 - How close should the delegation service be to the SRM service
Standardization: Storage Resource Mgr

SE
- Monitoring API
- SRM
- NFS 4.1
- WebDav
- http(s)
- gsi
- FTP
- Namespace API

gLite FTS
The gLite File Transfer Service

Oct 19, 2010
EMI Data, the Introduction. CHEP’10, Taipei, TW
More efforts

Fixing a design flaw
• Catalogues storage file locations (Storage URLs)
• Catalogues and SE’s get out of sync over time.
• Current (full dump) synchronization approach is painful and doesn’t scale.
• Message Passing is envisioned to fix this flaw.
Even more efforts

Harmonization / Integration
• UNICORE SRM-Client to do remote Storage Management.
• Interaction with gLite file catalogue to get Storage URL
• Already available:
 – http(s) client.
 – Posix I/O via mounted filesystem.
Conclusions

- **EMI Data** is a good opportunity to get our storage management middleware into a maintainable shape.
- Standardization is the way to get broader acceptance by other communities.
- Everybody can join or may provide suggestions through WLCG or EGI.eu.
Further reading

https://twiki.cern.ch/twiki/bin/view/EMI/EmiJra1T3Data

EMI is partially funded by the European Commission under Grant Agreement INFSO-RI-261611