NFS 4.1 / pNFS
The final steps

Patrick Fuhrmann, EMI, DESY, dCache.org
Content

- Who contributed to this presentation?
- What’s the issue?
- How it works.
- Benefits.
- Who is involved?
- Performance
- Some last words
Contributions to this presentation

- Technical Background
 - Tigran Mkrtchyan, dCache.org, DESY (dCache, pNFS impl.)

- Evaluation results, gridLab, DESY
 - Yves Kemp, gridLab, DESY
 - Dmitri Ozerov, gridLab, DESY
 - Federica Legger, gridLab, University Münich
 - Sergey Kalinin, Uni Wuppertal

- Slides and more from
 - Brent Welch, Panasas, Inc.
 - Geoffrey Noer, Panasas, Inc.
Motivation

What’s the issue?
Where are we coming from

‘Local’ network data access

Industry NFSv2 Panasa Lustre NFSv4.1 (pNFS)

HEP Kermit NFSv2 RFIO dCap xRoot NFSv4.1 (pNFS)

Single large Server Highly distributed data

Sep 06, 2011 NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge
Motivation

Details

Some information we need to understand the rest.
Some more details on that

NFS 2 and 3 model

Client

Meta-data

Data

Bottleneck

Panasa, GPFS, AFS, dCap, xrootd

Client

Meta-data

Separation of meta-data
Server from Storage server
In the protocol

Data

Data
And more …

Panasas, GPFS, …

OS

Application

Client

Drivers for Panasas, GPFS …

Filesystem

SERVER

SERVER

Data

Data

Meta-data

Meta-data

Data

Data

Client

Application

Drivers for dCap, xRoot…

Filesystem

SERVER

OS

NFS 2 Driver

And more …

Panasas, GPFS, …

Application

Client

Drivers for Panasas, GPFS …

Filesystem

SERVER

SERVER

Data

Data

Meta-data

Meta-data

Data

Data

Client

Application

Drivers for dCap, xRoot…

Filesystem

SERVER

OS

NFS 2 Driver
What’s bad with that?

- What’s good with Lustre, GPFS, AFS, BlueArc, Panasas, xrootd, dCap..
 - Client is highly tuned to capabilities of the corresponding server.

- What’s so bad with Lustre, GPFS, AFS, BlueArc, Panasas
 - You need to maintain one client kernel driver for each of them.
 - Keep track of all the different versions and dependencies.
 - You are stuck with a kernel version if vendor is late with updates.
 - Some vendors charge you for per client.

- What’s so bad with xrootd, dCap, rfio ...
 - Not a mountable file system, you need to link a library to the application, which is not always possible.
 - You have to maintain all those client libraries.
How it works

History and status on one slide

Inevitable
What happened next

- Although proprietary solutions gave companies advantages over their competitors, customers started to suffer.
- A solution for the dilemma was needed.
- As a consequence: 2004 Garth Gibson, Brent Welch (Panasas) and Peter Corbett (NetApp) submitted first pNFS draft to IETF.
- Later CITI (UNI Michigan) coordinated the efforts and SUN, EMC, IBM and others joined. (dCache joined 2006 after I met PH in Sardina).
- Dec 2008 IETF approved internet draft
- Jan 2010 IETF approved pNFS with Objects and Blocks
- Two reference implementations exist. One Open Source (Linux) and at least one private.
- “We assume, all major vendors are working on their servers”
How it works

Take a deep breath
pNFS, how it works

- pNFS is an extension to the Network File System v4 protocol standard
- It allows for parallel and direct access
 - From Parallel Network File System clients
 - To Storage Devices over multiple storage protocols
 - Moves the NFS (metadata) server out of the data path.

pNFS Clients

- File (NFS)
- Block (FC)
- Object (OSD)

Meta-data server

- Data
- Storage

- Control
- Meta-data

Sep 06, 2011
NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge
The pNFS standard defines the NFS 4.1 protocol extension between the (meta-data) server’ and the client.

The I/O protocol between client and storage is defined elsewhere, e.g.
- SCSI Block commands over Fibre Channel
- SCSI Object based storage (OSD) over iSCSI
- Network File System (NFS)

The control protocol between the server and storage is also specified elsewhere.
The pNFS layout

- Client gets a *layout from the NFS Server*
- The layout maps the file onto storage devices and addresses
- The client uses the layout to perform direct I/O to storage
- With the layout the client can decide which blocks of the file to fetch in parallel
- At any time the server can recall the layout
- Client commits changes and returns the layout when it’s done
- pNFS is optional, the client can always use regular NFSv4 I/O
pNFS clients

- Common client for different storage back ends.
- Wider availability across operating systems.
- Fewer support issues for storage vendors.

Client Apps
- pNFS client
 - Layout Driver

NFS 4.1
- pNFS server
 - e.g. Cluster FS
 - Layout metadata
 - Grant & Revoke

Backends
1. SBC (blocks)
2. OSD (objects)
3. NFS (files)
4. PVFS2 (files)
5. Future backend...
Benefits
Two aspect from our perspective

Simplicity

✓ Regular mount-point and real POSIX I/O
✓ Can be used by unmodified applications (e.g. Mathematica..)
✓ Data client provided by the OS vendor
✓ Smart caching (block caching) development done by OS vendors
✓ Security is part of the definition, not an add-on (GSS: Kerberos)
✓ Provides POSIXS ACL”s

Performance

✓ pNFS: parallel NFS (first version of NFS which support multiple data servers)
✓ Clever protocols, e.g. Compound Requests
Why should you be interested in pNFS

Stolen from : http://www.pnfs.com/

Benefits of Parallel I/O

✓ Delivers Very High Application Performance
✓ Allows for Massive Scalability without diminished performance

Benefits of NFS (or most any standard)

✓ Ensures Interoperability among vendor solutions
✓ Allows Choice of best-of-breed products
✓ Eliminates Risks of deploying proprietary technology
Who is involved?
Active Contribution by Industry

Stolen from
Brent Welch, Panasas, Inc, at the HPC Advisory Council, Lugano, Mar 2011

Key pNFS Participants

- Panasas (Objects)
- ORNL and ESSC/DoD funding Linux pNFS development
- Network Appliance (Files over NFSv4)
- IBM (Files, based on GPFS)
- BlueArc (Files over NFSv4)
- EMC (Blocks, HighRoad MPFSi)
- Sun/Oracle (Files over NFSv4)
- U of Michigan/CITI (Linux maint., EMC and Microsoft contracts)
- DESY – Java-based implementation
EMI Factsheet

Budget: about 24 Million Euros over 3 years
Funding: about 50% by EU-FP7, rest by partners
Covers: JRA, SA and NA
Partners: 22
Middlewares: Arc, gLite, UNICORE and dCache
European Middleware Initiative

Before EMI

3 years

After EMI

Applications Integrators, System Administrators

Standard Interfaces

Specialized services, professional support and customization

Standard interfaces

EMI Reference Services

Standards, New technologies (clouds) Users and Infrastructure Requirements
EMI and standards

- Encouraged by the EC, **EMI is strictly committed to standards.**
- EMI supports 3 storage systems
 - DPM (CERN)
 - StoRM (INFN, CNAF)
 - dCache (DESY, NDGF, FERMILab)
- **EMI is funding the support of standards** in all 3 SE’s
 - http, https and WebDAV
 - **NFS 4.1 / pNFS**
 - SRM, Storage Resource Manager
 - Common Storage Accounting Record
 - Common Storage Delegation Service
dCache.org is a collaboration between:
- DESY (Headquarters)
- The Nordic Data Grid Facility, NDGF
- FERMILab

- dCache.org provide the dCache storage element
- dCache is committed to standards
 - First Storage System running NFS 4.1 / pNFS in production
 - Http(s)
 - WebDAV
- Participates the regular pNFS Bakethons with all other pNFS vendors
dCache.org

dCache Deployment
- 94 PB in total
- 7 Tier I’s
- 40 Tier II’s

WLCG Storage per SE Type
- dCache
- Other Storage Systems

Storage Capacity
- USA: 28 PB
- Europe: 44 PB
- Germany: 16 PB
- Other: 1 PB

Cities and Sites
- USA: Madison, Florida, Wisconsin
- Europe: Cambridge, MA, London, Madrid, Amsterdam, Sweden
- Germany: Dresden, Freiburg, Mainz, Munich, Wuppertal, Aachen
- Other: Barcelona, Lyon, Athens, Pisa, Roma, NDGF

dCache Deployment
- NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge

Sep 06, 2011
Performance
Panasas

- Iozone benchmark
- DirectFlow versus pNFS
- 1GE files
- Per-file Object RAID
 - Client writes data and parity in RAID-5 pattern
 - Feature of object-based pNFS layout
Panasas Performance

Stolen from Brent Welch, Panasas, Inc, at the HPC Advisory Council, Lugano, Mar 2011

1GE Client Bandwidth

- DF Write
- pNFS Write
- DF Read
- pNFS Read

Writes pay for writing parity
DF still better at high client count
pNFS better at low client count
pNFS read-ahead not working right

MB/sec

Number of Clients

0 16 32 48 64 80 96 112 128 144
Performance

DESY / gridLab

Operated by
Yves Kemp
Dmitri Ozerov

But available for
Everyone who wants to
Evaluate pNFS with his/her
Application.
The DESY gridLab

- CREAM-CE
- Workernode 2 * 4 * Cores
 - 1 GBit

About
- 50% av. Tier II CPU
- 20% av. Tier II Storage
- 32 node 265 cores

Dedicated to
- NFS 4.1 evaluation

ARISTA 1
- 10 GBit
- 10 GBit

ARISTA 2
- 10 GBit
- 10 GBit

dCache Head
- 10 GBit
- 10 GBit

5 Pools
- 80 TBytes

Sep 06, 2011
NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge
ROOT analysis

measurements done at DESY/gridLab by Federica Legger

- ROOT analysis on SUSY D3PDs
- ROOT 5.26
- TTreeCache switched ON
- Reads each event in file(s)
- 25,000 Files in 5 pools
- 100 files per job
- 1 – 256 jobs running concurrently
- Duration 24 hours.

Event rate (Hz)

Measurements done at DESY/gridLab by Federica Legger

Sep 06, 2011 NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge
Trying to find a case where NFS 4.1 is really bad (and found one)

Vector read effect. The ROOT driver is not doing vector read for plain file systems but for dCap/xRoot,
Wide area transfers (simulation)

Simulation of wide area transfers with
✓ constant latencies
✓ no packet losses.

Mean duration (sec)

- root: nocache
- root: cache
- cat

Measurements done at DESY/gridLab by Yves Kemp

Sep 06, 2011
NFS 4.1 / pNFS, the final steps, ACAT, Uxbridge
Availability
Industry vendor solutions

- Vendors are still careful. Nobody wants to be the first.
- NetApp promised something for end of this year (already two times postponed)
- IBM likely pNFS on GPFS end of 2012
- BlueArc about beginning of next year.
- ...

EMI server

- DPM in beta
- StoRM with availability in GPFS
- dCache : production

Clients (Linux)

- With kernel 2.6.39
- Fedora 16
- Expected in RH 6.2
Some last words

- pNFS significantly simplifies the current protocol zoo by providing a
 - authenticated, authorized,
 - Parallel and
 - Highly scalable standard way of accessing data.

- Proprietary protocols clearly have their advantages, none of which prevails having a common high performance data access standard.

- Future (by Geoffrey Noer, Panasas) “pNFS will be in production use in 2012, fully supported by major Linux distributions, by Panasas and other leading storage vendors”

- Science is well prepared with EMI-Data supporting pNFS, with DPM and dCache.

- A first pNFS system is in production at DESY for the Photon Science community.
Some references
References

Center for Technology Integration
http://www.citi.umich.edu/

NFS
http://www.nfsv4.org/nfsv4techinfo.html

PNFS
http://www.pnfs.com/

RFC 5661

NFS 4.1 in first dCache Golden Release (1.9.5)
http://www.dcache.org/downloads/1.9/release-notes-1.9.5-1.html

EMI, The European Middleware Initiate

EMI, The European Grid Infrastructure
http://www.egi.eu

WLCG Collaboration Workshop, July 20, 2010, Patrick Fuhrmann

Grid Deployment Board, Oct 13, 2010, Patrick Fuhrmann

11 Reasons you should care, June 16, 2010, Gerd Behrmann
References

CHEP 2010, Oct 20, 2010, Yves Kemp :

Hepix Fall 2010, Nov 2, 2010, Patrick Fuhrmann

Linux Kernel : www.kernel.org

NetApp : www.netapp.com

BlueArch : www.bluearc.com

Scientific Linux
http://www.scientificlinux.org

FERMILab
http://www.fnal.gov

pNFS enabled SL5 Kernel
http://www.dcache.org/chimera/x86_64; dcache-www01.desy.de/yum/nfs4.1/el5/nfsv41.repo
Thank you

EMI is partially funded by the European Commission under Grant Agreement INFSO-RI-261611