
MS154E Software Manual

Mercury™ Class
PI_Mercury_GCS_DLL
Release: 1.0.1 Date: 2007-12-19

This document describes software
for use with the following product(s):

 C-863
Mercury™ Networkable Single-Axis DC-
Motor Controller

 C-862
Mercury™ Networkable Single-Axis DC-
Motor Controller

 C-663
Mercury™ Step Networkable Single-Axis
Stepper Motor Controller

 © Physik Instrumente (PI) GmbH & Co. KG
 Auf der Römerstr. 1 ⋅ 76228 Karlsruhe, Germany
 Tel. +49 721 4846-0 ⋅ Fax: +49 721 4846-299
 info@pi.ws ⋅ www.pi.ws

Physik Instrumente (PI) GmbH & Co. KG is the owner of the following company names and
trademarks:
PI®, PIMikroMove®, Mercury™, Mercury Step™

T
parties:
Windows, LabVi

he following designations are protected company names or registered trademarks of third

ew

opyright 1999–2007 by Physik Instrumente (PI) GmbH & Co. KG, Karlsruhe, Germany.

.

irst printing 2007-12-19
E, Release 1.0.1

ubject to change without notice. This manual is superseded by any new release. The newest

C
The text, photographs and drawings in this manual enjoy copyright protection. With regard
thereto, Physik Instrumente (PI) GmbH & Co. KG reserves all rights. Use of said text,
photographs and drawings is permitted only in part and only upon citation of the source

F
Document Number MS154
PI_Mercury_GCS_DLL_MS154E.doc

S
release is available for download at www.pi.ws.

www.pi.ws

About This Document

Users of This Manual

This manual assumes that the reader has a fundamental understanding of basic servo systems,
as well as motion control concepts and applicable safety procedures.
The manual describes the PI General Command Set (GCS) Windows DLL for Mercury™ Class
controllers. With present firmware, all software which accepts GCS commands must pass them
to the controller via this DLL or the corresponding COM Server.
This document is available as PDF file on the product CD. For updated releases see
www.pi.ws, contact your PI Sales Engineer or write info@pi.ws.

Conventions

The notes and symbols used in this manual have the following meanings:

CAUTION

Calls attention to a procedure, practice, or condition which, if not
correctly performed or adhered to, could result in damage to
equipment.

NOTE

Provides additional information or application hints.

Related Documents

The Mercury™ controller and the software tools which might be delivered with the controller are
described in their own manuals (see below). All documents are available as PDF files via
download from the PI Website (www.pi.ws) or on the product CD. For updated releases contact
your Physik Instrumente Sales Engineer or write info@pi.ws.

Hardware User Manuals User Manuals for all hardware components

Mercury GCSLabVIEW_MS149E LabView VIs based on PI GCS command set
Mercury GCS DLL_MS154E WindowsGCS-based DLL Library (this document)
PIMikroMove User Manual SM148E PIMikroMove® Operating Software (GCS-based)
Mercury Commands MS163E Mercury™ GCS Commands
PIStageEditor _SM144E Software for managing GCS stage-data database

MMCRun MS139E Mercury Operating Software (native commands)
Mercury Native DLL & LabVIEW MS177E Windows DLL Library and LabView VIs (native-

command-based)
Mercury Native Commands MS176E Native Mercury™ Commands

http://www.pi.ws/
mailto:info@pi.ws?subject=Updated%20document
http://www.pi.ws/
mailto:info@pi.ws

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 4

Contents

0. Disclaimer ... 5

1. Introduction to MERCURY™ GCS DLL 6
1.1. Quick Start ... 6

1.1.1. Software Installation... 6
1.1.2. Connect the Controller ... 6
1.1.3. Install USB Drivers... 6

1.2. General Command Set (GCS) ... 7
1.3. Axes and Stages.. 7

1.3.1. Axis Designators .. 7
1.3.2. I/O Line Designators .. 8
1.3.3. Controller Joystick Connections... 8

1.4. Threads.. 8
1.5. Overview .. 8
1.6. Units and GCS... 9

1.6.1. Hardware, Physical Units and Scaling ... 9
1.6.2. Rounding Considerations... 9

2. Referencing... 9

3. DLL Handling .. 9
3.1. Using a Static Import Library.. 9
3.2. Using a Module Definition File ... 10
3.3. Using Windows API Functions... 10

4. Function Calls ... 11
4.1. Controller ID... 11
4.2. Axis Identifiers.. 11
4.3. Axis Parameters... 11

5. Types Used in PI Software... 11
5.1. Boolean Values.. 11
5.2. NULL Pointers.. 12
5.3. C-Strings .. 12

6. GCS COM Server .. 12
6.1. No Need for Controller IDs... 12
6.2. No Need for Buffer Sizes ... 13
6.3. COM Properties ... 13

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

7. Native Command Gateway... 15

8. Functions for User-Defined Stages............................... 15
8.1. Function Calls to Edit, Remove and Add Stage Definitions 16
8.2. Stage Definition Function Overview... 16
8.3. Stage Parameter IDs ... 17

9. Communication Initialization... 17
9.1. Functions ... 17
9.2. Detailed Description... 18
9.3. Function Documentation .. 18
9.4. Interface Settings ... 20

9.4.1. RS-232 Settings... 20

10. Mercury™ Class Commands ... 20
10.1. Functions ... 20
10.2. Detailed Description... 22
10.3. Function Documentation .. 22

11. Motion Parameters Overview... 42
11.1. Parameter Handling ... 42
11.2. Parameter List.. 43
11.3. Transmission Ratio and Scaling Factor 45

12. Macro Storage on Controller ... 46
12.1. Features and Restrictions .. 46
12.2. Native Macro Recording Mechanism ... 46
12.3. Macro Translation by the GCS DLL ... 46

12.3.1. Macro Creation from GCS ... 46
12.3.2. GCS Listing Stored Macros ... 48
12.3.3. Macro Translation and Listing Examples 49

13. Error Codes... 50

14. Index .. 60

0. Disclaimer
This software is provided "as is." PI does not guarantee that this software is free of
errors and will not be responsible for any damage arising from the use of this
software. The user agrees to use this software on his own responsibility.

Release 1.0.1 www.pi.ws Page 5

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

1. Introduction to MERCURY™ GCS DLL
The PI_Mercury_Class_GCS_DLL allows controlling one or more PI Mercury™ Class controller
networks, each consisting of one or more Mercury™ Class controllers. Each network is connected to
a host PC via a single RS-232 or USB port.

NOTE

Multiple controllers on a single host computer USB or RS-232 interface are interconnected
using a RS-232 bus architecture. The host communicates with one Mercury™ Class device at a
time. Such a network appears to the MERCURY™ GCS DLL user as a single, multi-axis
controller and is usually referred to in this manual as a “controller network”.

1.1. Quick Start

1.1.1. Software Installation
To install the PI_Mercury_GCS_DLL on your host PC, proceed as follows:

 Be sure to login to the host PC with administrator rights
 If the Setup Wizard does not open automatically, start it from the root directory of the CD with

the icon.
 Follow the on-screen instructions. You can choose between “typical” and “custom”

installation. Typical components are GCS LabView drivers, Native and GCS DLLs,
PIMikroMove®, MMCRun and all manuals. “Typical” is recommended.

 Sample programs and the appropriate source code are to be found in the \Sample directory
of the product CD.

1.1.2. Connect the Controller

! CAUTION

Never connect the RS-232-IN and USB connectors of the same controller to a PC at
the same time, as damage may result.

Physically connect the controller or controller network to the PC. Never connect both USB and RS-
232 cables to the host at the same time. See the controller User Manual for details.

1.1.3. Install USB Drivers
When the USB interface to the controller network is connected for the first time, you will be given the
opportunity to install the drivers; this may be done at any time, though admin rights are required.
Choose to select the device from a list, and give the “\Drivers” directory on the product CD as the
location to search.

Release 1.0.1 www.pi.ws Page 6

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

NOTE

The USB drivers make the USB interface appear to the software as an additional RS-232 COM
port. That port is present only when the Mercury™ USB device is connected and powered up.

To initiate communication, use the DLL functions described in "Communication Initialization" on
p. 17.

1.2. General Command Set (GCS)
It is possible to use either the Mercury™ native ASCII command set or the PI General Command
Set (GCS) to operate a Mercury™ class controller. .The native ASCII command set is understood by
all versions of the controller firmware directly (see the Mercury Native Commands manual for
details). GCS, the PI standard command set, offers compatibility between different controllers. With
current firmware, GCS command support is implemented by the Windows DLL described in this
manual which translates the GCS commands to the native commands. Once the PI Mercury
Class_GCS_DLL.dll library is installed, you can use, for example, the LabVIEW GCS drivers to
control a Mercury™ class controller as though it were any GCS-compatible controller.
If you are using LabView, please read the documentation for the LabVIEW drivers to find out how to
"connect" to the GCS library.

NOTE

Although the GCS DLL has a gateway for sending native commands, mixing native and GCS
commands is not recommended. GCS move commands, for example, may not work properly
after the position has been changed by a native command.

1.3. Axes and Stages
Mercury™ Class controllers can be chained together on an RS-232 bus network and all controlled
through one port of the host computer (USB or RS-232). One that network, native commands are
used, and the commands and responses are always sent between the host computer and one
selected controller, with the other controllers in the deselected state.

The GCS DLL makes a network of Mercury™ Class controllers connected to one port look like one
controller with up to 16 axes (if host’s RS-232 port is used, number of usable axes may be limited to
as few as 6 by current available). See the controller User Manual for information on setting the
controller device number (1 to 16); typically 4 address DIP switches are used. The device number
determines the default identifiers of the corresponding axes and I/O channels.

1.3.1. Axis Designators
By default the axes are named “A” to “P”. The axis connected to the Mercury™ controller with device
number 1 will be addressed as axis “A” in the GCS DLL, the Mercury™ No. 5 will provide axis “E”,
etc. If these two controllers are the only ones connected, the GCS DLL will provide only the two
axes “A” and “E”.

Release 1.0.1 www.pi.ws Page 7

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

1.3.2. I/O Line Designators
Each Mercury™ and Mercury™ Step controller provides four analog/digital input and four digital
output lines. For digital IO, these channels are named with the characters
ABCD EFGH IJKL MNOP QRST UVWX YZ12 3456 7890 @?>= <;:`
 _^]\ [/.- ,+*) ('&% $#"!
 in groups of 4, one group for each of the 16 possible controller addresses.
For analog input (0 to 5 V), the input channels of a Mercury™ Class network have IDs from 1 to
64—again 4 x 1 less than the device number is added to the line number to give the channel
number. Note that for C-862 controllers, the last channel is digital-only.
Example: A network with a C-862 DC Motor Controller with device number 1 and a C-663 Stepper
Controller with device number 3. The GCS DLL will provide

• Axes “A” and “D”

• Digital I/O using channel IDs A, B, C, D, M, N, O and P

• Analog input using channel IDs 1-3 and 25-28

1.3.3. Controller Joystick Connections
Each axis associated with a controller having a joystick port, can be associated with one axis of
motion of a joystick. That axis, and the associated joystick button, is identified in the network by the
controller device number. Note that the included joystick Y-cable permits connecting one axis and
one logical button of one joystick to one controller and the other axis and other button to another
controller.

1.4. Threads
This DLL is not thread-safe. The function calls of the DLL are not synchronized and can be safely
used only by one thread at a time.

1.5. Overview
This document describes the general handling of GCS DLLs and the individual functions of the
MERCURY GCS DLL. You can also use this document when you are working with the GCS COM
server—see Section 6 on p. 12 for the COM server special features.

 Units and GCS (p. 9) explains the units used for commanding positions
 Referencing (p. 9) explains how to properly initialize your system and the connected stages
 DLL Handling (p. 9) explains how to load the library and how to access the functions provided by the

MERCURY DLL.
 Function Calls (p. 11) and Types Used in PI Software (p. 11) provides some general information about the

syntax of most commands in the DLL.
 GCS COM Server (p. 12) points out the differences between DLL and COM server handling.
 Native Command Gateway (p. 15) shows how to initiate communication with a Mercury™ Class controller

or controller network (see also Interface Settings (p. 20)).
 Mercury™ Class Commands (p. 20) describes the functions encapsulating the embedded GCS

commands for Mercury™ Class controllers
 Motion Parameters Overview (p. 42) describes how to handle the stage parameters and list the valid

parameter set.
 Error Code (p. 50) has a description of the possible errors.

Release 1.0.1 www.pi.ws Page 8

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

1.6. Units and GCS

1.6.1. Hardware, Physical Units and Scaling
The GCS (General Command Set) system uses basic physical units of measure. Most controllers
and GCS software have default conversion factors chosen to convert hardware-dependent units
(e.g. encoder counts) into millimeters or degrees, as appropriate (see Mercury_SPA and
Mercury_qSPA descriptions, parameters 14 and 15). The defaults are generally taken from a
database of stages that can be connected. An additional scale factor can be applied (see
Mercury_DFF), to the basic physical unit making a working physical unit available without
overwriting the conversion factor for the first. This is the unit referred to by the term "physical unit" in
the rest of this manual.

1.6.2. Rounding Considerations
When converting move commands in physical units to the hardware-dependent units required by the
motion control layers, rounding errors can occur. The GCS software is so designed, that a relative
move of x physical units will always result in a relative move of the same number of hardware units.
Because of rounding errors, this means, for example, that 2 relative moves of x physical units may
differ slightly from one relative move of 2x. When making large numbers of relative moves,
especially when moving back and forth, either intersperse absolute moves, or make sure that each
relative move in one direction is matched by a relative move of the same size in the other direction.

2. Referencing
Upon startup (or after a call to Mercury_INI ()) a controller has no way of knowing the absolute
position of a connected axis. The axis is said to be “unreferenced” and no moves can be made.
Moves can be made allowable in the following ways:

 The axis can be referenced. This involves moving it until it trips a reference or
limit switch. See the Mercury_REF, Mercury_MNL and Mercury_MPL
functions for details

 The controller can be told to set the reference mode for the axis OFF and allow
relative moves only, without knowledge of the absolute position. See the
Mercury_RON function for details.

 For axes with reference mode OFF, the controller can be told to assume the
absolute position has a given value. See the Mercury_POS function for details.

3. DLL Handling
To get access to and use the DLL functions, the library must be included in your software project.
There are a number of techniques supported by the Windows operating system and supplied by the
different development systems. The following sections describe the methods which are most
commonly used. For detailed information, consult the relevant documentation of the development
environment being used. (It is possible to use the Mercury_DLL.DLL in Delphi projects. Please
see http://www.drbob42.com/delphi/headconv.htm for a detailed description of the steps necessary.)

3.1. Using a Static Import Library
 The PI_Mercury_GCS_DLL.DLL module is accompanied by the PI_Mercury_GCS_DLL.LIB
file. This is the static import library which can be used by the Microsoft Visual C++ system for 32-bit
applications. In addition, other systems, like the National Instruments LabWindows CVI or Watcom
C++ can handle, i.e. understand, the binary format of a VC++ static library. When the static library is
used, the programmer must:
1. Use a header or source file in which the DLL functions are declared, as needed for the compiler. The

declaration should take into account that these functions come from a "C-Language" Interface. When
building a C++ program, the functions have to be declared with the attribute specifying that they are

Release 1.0.1 www.pi.ws Page 9

http://www.drbob42.com/delphi/headconv.htm

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

coming from a C environment. The VC++ compiler needs an extern "C" modifier. The declaration must
also specify that these functions are to be called like standard Win-API functions. That means the VC++
compiler needs to see a WINAPI or __stdcall modifier in the declaration.

2. Add the static import library to the program project. This is needed by the linker and tells it that the functions
are located in a DLL and that they are to be linked dynamically during program startup.

3.2. Using a Module Definition File
 The module definition file is a standard element/resource of a 16- or 32-bit Windows application.
Most IDEs (integrated development environments) support the use of module definition files.
Besides specification of the module type and other parameters like stack size, function imports from
DLLs can be declared. In some cases the IDE supports static import libraries. If that is the case, the
IDE might not support the ability to declare DLL-imported functions in the module definition file.
When a module definition file is used, the programmer must:
1. Use a header or source file where the DLL functions have to be declared, which is needed for the compiler.

In the declaration should be taken into account that these function come from a "C-Language" Interface.
When building a C++ program, the functions have to be declared with the attribute that they are coming
from a C environment. The VC++ compiler needs an extern "C" modifier. The declaration also must be
aware that these functions have to be called like standard Win-API functions. Therefore the VC++
compiler need a WINAPI or __stdcall modifier in the declaration.

2. Modify the module definition file with an IMPORTS section. In this section, all functions used in the program
must be named. Follow the syntax of the IMPORTS statement. Example:
 IMPORTS
 PI_Mercury_GCS_DLL.Mercury_IsConnected

3.3. Using Windows API Functions
 If the library is not to be loaded during program startup, it can sometimes be loaded during program
execution using Windows API functions. The entry point for each desired function has to be
obtained. The DLL linking/loading with API functions during program execution can always be done,
independent of the development system or files which have to be added to the project. When the
DLL is loaded dynamically during program execution, the programmer has to:
1. Use a header or source file in which local or global pointers of a type appropriate for pointing to a function

entry point are defined. This type could be defined in a typedef expression. In the following example, the
type FP_Mercury_IsConnected is defined as a pointer to a function which has an int as argument
and returns a BOOL value. Afterwards a variable of that type is defined.
 typedef BOOL (WINAPI *FP_Mercury_IsConnected)(int);
 FP_Mercury_IsConnected p Mercury _IsConnected;

2. Call the Win32-API LoadLibrary()function. The DLL must be loaded into the process address space of
the application before access to the library functions is possible. This is why the LoadLibrary() function
has to be called. The instance handle obtained has to be saved for us by the GetProcAddress()
function. Example:
 HINSTANCE hPI_Dll = LoadLibrary("PI_Mercury_GCS_DLL.DLL\0");

3. Call the Win32-API GetProcAddress()function for each desired DLL function. To call a library function,
the entry point in the loaded module must be known. This address can be assigned to the appropriate
function pointer using the GetProcAddress() function. Afterwards the pointer can be used to call the
function. Example:
 pMercury_IsConnected =
(FP_Mercury_IsConnected)GetProcAddress(hPI_Dll,"Mercury_IsConnected\0");
 if (pMercury_IsConnected == NULL)
 {
 // do something, for example
 return FALSE;
 }
 BOOL bResult = (*pMercury_IsConnected)(1); // call Mercury_IsConnected(1)

Release 1.0.1 www.pi.ws Page 10

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

4. Function Calls
 Almost all functions will return a boolean value of type BOOL (see “Types Used in PI Software”
(p. 11)). If the function succeeded, the return value is TRUE, otherwise it is FALSE. To find out what
went wrong, call Mercury_GetError()(p. 18)) and look up the value returned in “Error Code” (p. 50).
The first argument to most function calls is the ID of the selected controller network.

4.1. Controller ID
The first argument to most function calls is the ID of the selected controller network. To allow the
handling of multiple controller networks, the DLL returns a non-negative "ID" when a connection to a
controller network is opened. This is a kind of index to an internal array storing the information for
the different controller networks. All other calls addressing the same controller network require this
ID as first argument. The individual Mercury™ Class controllers in a Mercury™ controller network
are distinguished by the axes which they control.

4.2. Axis Identifiers
 Many functions accept one or more axis identifiers. If no axes are specified (either by giving an
empty string or a NULL pointer) some functions will address all connected axes. In a Mercury™
Class controller network, the different axes correspond to the different individual controllers.

4.3. Axis Parameters
 The parameters for the axes are stored in an array passed to the function. The parameter for the
first axis is stored in array[0], for the second axis in array[1], and so on. So, if you call
Mercury_qPOS("ABC", double pos[3]), the position for 'A' is in pos[0], for 'B' in pos[1] and
for 'C' in pos[2].

Axes: szAxes = "ABC" Positions:pos = {1.0, 2.0, 3.0}
szAxes[0] = 'A' pos[0] = 1.0

szAxes[1] = 'B' pos[1] = 2.0

szAxes[2] = 'C' pos[2] = 3.0

If you call Mercury_MOV("AC", double pos[2]) the target position for 'A' is in pos[0] and for
'C' in pos[1].
Each axis identifier is sent only once. Only the last occurrence of an axis identifier is actually sent to
the controller with its argument. Thus, if you call
Mercury_MOV("AAB", pos[3]) with pos[3] = { 1.0, 2.0, 3.0 }, 'A' will move to 2.0 and
'B' to 3.0. If you then call Mercury_qPOS("AAB", pos[3]), pos[0] and pos[1] will contain 2.0
as the position of 'A'.
(See Mercury_MOV() (p. 30) and Mercury_qPOS() (p. 35))
See “Types Used in PI Software” (p. 11) for a description of types used for parameters.

5. Types Used in PI Software

5.1. Boolean Values
 The library uses the convention used in Microsoft's C++ for boolean values. If your compiler does
not support this directly, it can be easily set up. Just add the following lines to a central header file of
your project:
 typedef int BOOL;
 #define TRUE 1

Release 1.0.1 www.pi.ws Page 11

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

 #define FALSE 0

5.2. NULL Pointers
 In the library and the documentation "null pointers" (pointers pointing nowhere) have the value
NULL. This is defined in the Windows environment. If your compiler does not know this, simply use:
 #define NULL 0

5.3. C-Strings
 The library uses the C convention to handle strings. Strings are stored as char arrays with '\0' as
terminating delimiter. Thus, the "type" of a c-string is char*. Do not forget to provide enough
memory for the final '\0'. If you declare:
char* text = "HELLO";

 it will occupy 6 bytes in memory. To remind you of the zero at the end, the names of the
corresponding variables start with "sz".

6. GCS COM Server
For some programming languages it is much simpler to use a COM server than to link to DLL
functions. Mainly Visual Basic and other script languages (e.g. Python, Perl) provide good support
for calling COM functions. See the provided samples for ways to integrate the GCS COM into the
different languages / development environments. Sample programs and the appropriate source
code are to be found in the \Samples directory of the product CD.
The functions are more or less the same as provided by the DLL, so this manual can be used to get
to know the basic functionality. There are however fundamental syntax differences:

• No controller ID, since you can create instances of the COM object for every single controller
network connected (see Section 6.1)

• With COM it is possible to allocate space for strings and arrays by the callee without
disturbing the caller, so there is no need to send any buffer sizes or array lengths to the COM
functions (see Section 6.2)

• It is possible to have "properties" which not only set values but also trigger certain functions
(see Section 6.3)

6.1. No Need for Controller IDs

You can create instances for every controller network connected. Below is an example of equivalent
C or C++ and Visual Basic code:

int ID1;
int ID2;
ID1 = Mercury_ConnectRS232(1, 115200);
ID2 = Mercury_ConnectRS232(2, 115200);

if (!Mercury_IsConnected(ID1))
 printf("Could not connect to controller 1";
if (!Mercury_IsConnected(ID2))
 printf("Could not connect to controller 2";

C or C++ code

Dim MERCURY1 As New MERCURY

Release 1.0.1 www.pi.ws Page 12

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Dim MERCURY2 As New MERCURY

MERCURY1.ConnectRS232(1, 115200)
MERCURY2.ConnectRS232(2, 115200)

If Not MERCURY1.IsConnected Then
 Me.Caption = "Could not connect to controller 1"
End If
If Not MERCURY2.IsConnected Then
 Me.Caption = "Could not connect to controller 2"
End If

Visual Basic code

6.2. No Need for Buffer Sizes

If you want to read a string with a DLL functions from the DLL, you need to allocate the neccessary
space and tell the DLL how large the buffer is. The COM server, however, expects a “string object".
The COM server can let the string grow and the string object itself holds all the neccessary
information about length and memory requirements. Thus the following C or C++ and Visual Basic
code is equivalent:

char sIDN[1024];
Mercury_qIDN(ID, sIDN, 1024);

C or C++ code

Dim sIDN As String
MERCURY.qIDN(sIDN)

Visual Basic Code

6.3. COM Properties

A COM server can have so-called properties. These behave like ordinary variables, but if you read
from or write to them, an internal function is triggered (not every property needs to support both
reading and writing). Most GCS COM servers have a property "moving". So you do not need to call
IsMoving() but can simply use (read) that property and a call to IsMoving() is generated internally.
Some GCS COM servers have properties for many axis identifiers. If you assign a new value to one
of these properties and the corresponding axis is connected, a MOV is sent. If you read from such a
property, the COM will first call POS? and then set the value.

Here are two more blocks of equivalent code:

BOOL bIsReferencing;
do
{
 Sleep(100);
 Mercury_IsReferencing(ID, "", &bIsReferencing);
} while (bReferencing == TRUE);

Mercury_MOV(ID, "A", 10);
Sleep(1000);
double currentPos;
Mercury_qPOS(ID, "A", ¤tPos);

C or C++ code

Do
 Sleep 100

Release 1.0.1 www.pi.ws Page 13

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Loop While MERCURY.Referencing ' wait until referenced

MERCURY.A = 10;
Sleep 1000;
Dim currentPos As Double
currentPos = MERCURY.A

Visual Basic Code

Release 1.0.1 www.pi.ws Page 14

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

7. Native Command Gateway
The GCS DLL includes a function which provides access to all the commands of the controller’s
native command set. Use of this set is only recommended for users who have already worked with
this command set and do not want to learn the GCS command set. The General Command Set
should be preferred because of its compatibility with other PI controllers.
The GCS DLL function calls giving access to native commands/responses are as follows:

 BOOL Mercury_ReceiveNonGCSString(intID, char* szString, int iMaxSize);
 BOOL Mercury_SendNonGCSString(intID, const char* szString);

BOOL Mercury_ReceiveNonGCSString (int ID, char * szAnswer, int bufsize)
Gets the answer to a native command of one of the Mercury™s in the network, provided its length does
not exceed bufsize. The answers to a native command are stored inside the DLL, where as much space
as necessary is obtained. Each call to this function returns and deletes the oldest answer in the DLL.
Note: See the Mercury Native Commands manual for a description of the native commands which are
understood by the firmware, and for a command reference.
Arguments:

ID ID of controller
szAwnser the buffer to receive the answer.
bufsize the size of szAnswer.

Returns:
TRUE if no error, FALSE otherwise

BOOL Mercury_SendNonGCSString (int ID, const char* szCommand)
Sends a native command to one of the Mercury™s in the network. Any native command can be sent—this
function is also intended to allow use of native commands not having a corresponding GCS function in the
current version of the library.
Notes:
Do not mix up the GCS command set and the native command set! GCS move commands do not
work properly anymore after the position was changed by native commands.

If you want to address different controllers, the native-command, two-character
address selection code can also be sent with this function (see the Mercury™ Native
Commands manual for details)

char addr[3];
addr[0] = 1;
addr[1] = ‘A’; // for mercury with address 0
addr[2] = ‘\0’;
Mercury_SendNonGCSString(ID, addr);

See the Native Commands manual for a description of the native commands which are understood by the
firmware, and for a command reference.
Arguments:

ID ID of controller
szCommand the GCS command as string.

Returns:
TRUE if no error, FALSE otherwise

8. Functions for User-Defined Stages
 The PI Mercury GCS DLL also has functions allowing you to both define and save new stages
(parameter sets).

Release 1.0.1 www.pi.ws Page 15

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Being able to specify the parameters of a stage and then save those parameters as a set under the
stage name makes it easier to connect to previously defined stages. New (user-defined) stages are
all stored in MERCURYUserStages.dat and known PI stages are in PiStages.dat. For parameter
descriptions see the “Parameter List” Section (p. 43).
Two separate mechanisms are provided for the use of stage parameter sets:

 You can execute a function call that puts the PIStageEditor (a GUI
dialog) on the screen where your user can set the stage parameters
as he or she desires. See the separate PI Stage Editor manual for a
description of how to operate that graphic interface.

 You can put the desired values in variables and execute function calls
for setting the parameters and manipulating the parameter sets. See
the function descriptions and the parameter ID list on p. 43 for details.

In either case, the procedure involves optionally loading a parameter set (connecting a stage) from
the list of stage names in the .dat files, perhaps then deleting that stage (user-defined stages only)
or editing the current, active parameters and saving them under a “new” name (to
MercuryUserStages.dat) . It is not possible to edit MercuryUserStages.dat directly: all changes go
via the currently active parameter set. PiStages.dat may not be edited at all, but updated versions
should be made available regularly from PI.

8.1. Function Calls to Edit, Remove and Add Stage Definitions
Note that the parameter which determines whether a stage is “new” or not is the Name parameter. If
there is noName specified, the parameter set is not valid. Only when the current parameter set is
valid can you, for example, call INI.
To create a valid parameter set for a new stage, you can use the Mercury_SPA function call (p. 41).
You can ease the creation by loading an existing parameter set with CST (p.22) and afterwards
change the name and any other parameters, which differ, with SPA. (The CST command “connects”
a valid stage, i.e. makes its parameter set active. It uses the corresponding parameters in the DAT
files, so that you do not have to set them all by yourself.)
To save a new stage and thus make it available for a future connection with CST, use
Mercury_AddStage() (p.) to add its parameter set to MercuryUserStages.dat. After addition to
MERCURYUserStages.dat the stage will also appear in the list returned by VST? (p.).
If you want to remove a stage from MercuryUserStages.dat call Mercury_RemoveStage() (p.17).
If you want to change parameters in MercuryUserStages.dat directly, call
Mercury_OpenUserStagesEditDialog() to open it with the PIStageEditor. With
Mercury_OpenPiStagesEditDialog() you can open the PiStages.dat with the PIStageEditor, but
the file is protected and can not be changed. However with the PIStageEditor it is possible to save
PiStages.dat under a new name (in the same directory) and edit this new file.
Notes:
The GCS DLL only accepts the DAT-files PiStages.dat and MercuryUserStages.dat. Although it is
possible to save DAT-files with any user-defined names, they are not used by the software.
The CST (p.22) and VST? (p.39) commands look for the files MercuryUserStages.dat and
PiStages.dat in the directory of the executable (EXE) file. If you have selected the Typical setup
type, this directory is set automatically to C:\<Program Files>\PI\GcsTranslator (default). If you
choose the Custom setup type, you can specify another directory. In that case the CST (p. 22) and
VST? (p. 39) commands will look there for the MercuryUserStages.dat and PiStages.dat files.

8.2. Stage Definition Function Overview
BOOL Mercury_AddStage (const ID, const char* szAxes)
BOOL Mercury_RemoveStage (int ID, const char *szStageName)

Release 1.0.1 www.pi.ws Page 16

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 17

BOOL Mercury_OpenUserStagesEditDialog (int ID)
BOOL Mercury_OpenPiStagesEditDialog (int ID)

8.3. St

accessed by the user, for a complete list see the “Parameter List” Section (p. 43).

age Parameter IDs
When defining user stages, it is important to set the stage parameters correctly.
See the Mercury_qSPA function call on p. 36 for the parameters most frequently

BOOL Mercury_AddStage (const int iId, char *const szAxes)

Adds the stage of the specified axis to the file MercuryUserStages.dat with the user defined stages.
Arg

 character of the axis.
Ret

TRUE if successful, FALSE otherwise

uments:
iId ID of controller
szAxes
urns:

BOOL Mercury_RemoveStage (const int iId, char * szStageName)

Removes the stage with the given name from the MercuryUserStages.dat file, which contains the user-
.

Arg

eName the stage name as string.
Ret

TRUE if successful, FALSE otherwise

defined stages
uments:
iId ID of controller
szStag
urns:

BOOL Mercury_OpenPiStagesEditDialog (const int iId)

Opens a dialog to look at the PiStages.dat file, which contains the stages defined by PI. No changes can

Arg
f controller

Ret
TRUE if successful, FALSE otherwise

be made to this file.
uments:
iId ID o
urns:

BOOL Mercury_OpenUserStagesEditDialog (const int iId)

Opens a dialog to edit, add and remove stages from the MercuryUserStages.dat file, which contains the
tages.

Arg
f controller

Ret
TRUE if successful, FALSE, if the buffer was too small to store the message

user-defined s
uments:
iId ID o
urns:

9. Communication Initialization

9.1. Functions
 int Mercury_ConnectRS232 (int nPortNr, long BaudRate)

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 18

 int Mercury_InterfaceSetupDlg (const char* szRegKeyName, BOOL bShowDetails)

n (int ID)

axlen)
 BOOL Mercury_SetErrorCheck (int ID, BOOL bErrorCheck)

9.2. De
r controller

l array

the connection to the specified controller
network and free its system resources.

9.3. Function Documentation

 BOOL Mercury_IsConnected (int ID)
 void Mercury_CloseConnectio
 int Mercury_GetError (int ID)
 BOOL Mercury_TranslateError (int errNr, char *szBuffer, int m

tailed Description
To use the DLL and communicate with a Mercury™ class controller o
network, the DLL must be initialized with one of the "open" functions
Mercury_InterfaceSetupDlg() or Mercury_ConnectRS232(). To allow the
handling of multiple controller networks, the DLL will return a non-negative "ID"
when one of these functions is called. This is a kind of index to an interna
storing the information for the different controller networks. All other calls
addressing the same controller network have this ID as first parameter.
Mercury_CloseConnection() will close

void Mercury_CloseConnection (int ID)
Close connection to Mercury Class controller network associated with ID. ID will not be valid any longer.
Argum

ID ID of controller network, if ID is not valid nothing will happen.
ents:

int Mercury_ConnectRS232 (int nPortNr, long BaudRate)
Open an RS-232 ("COM") interface to a controller. All future calls to control this controller need the ID

s call.
Arg

 to use (e.g. 1 for "COM1")
ate to use

Ret
ID of new object, -1 if interface could not be opened or no controller is responding.

returned by thi
uments:
nPortNr COM-port
BaudR
urns:

int Mercury_GetError (int ID)
Get error status; if there is no error set in the library, this function will call Mercury_qERR() (p. 32) to

he error status in one of the controllers in the network. Any error returned is also cleared.
Ret

error ID, see Error codes (p. 50) for the meaning of the codes.

determine t
urns:

int Mercury_InterfaceSetupDlg (const char* szRegKeyName)
Open dialog to let user select the interface and create a new Controller object. All future calls to control
this Mercury™ Network need the ID returned by this call. See Interface Settings (p. 20) for a detailed

he dialogs shown.
Arg

e is NULL or "" the default key
EY_LOCAL_MACHINE\SOFTWARE\PI\Mercury_DLL" is used.

Not
epresent a single "\" in a literal: for example to

description of t
uments:
szRegKeyName key in the Windows registry in which to store the settings, the key used is
"HKEY_LOCAL_MACHINE\SOFTWARE\<your keyname>" if keynam
"HK
e:
If your programming language is C or C++, use "\\" to r
create "MyCompany\Mercury_DLL" you must call

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 19

Mercury_InterfaceSetupDlg("MyCompany\\Mercury_DLL")

Returns:
ID of new object, -1 if user
controller is responding.

 pressed "CANCEL", the interface could not be opened or no Mercury™ Class

BOOL Mercury_IsConnected (int ID)
Check if the
Ret

re is a Mercury™ Class controller network with an ID of ID.
urns:
TRUE if ID points to an exisiting controller network, FALSE otherwise.

BOOL Mercury_SetErrorCheck (int ID, BOOL bErrorCheck)
Set error-check mode of the library. With this call you can specify whether the library should check the
error state of the currently selected controller on the controller network (with "ERR?") after sending a
command. This will slow down communications, so if you need a high data rate, switch off error checking
and call Mercury_GetError() (p. 18) yourself when there is time to do so. You might want to use
permanent error checking to debug your application and switch it off for normal operation. At startup of

ecking is switched on. the library error ch
Arguments:

ID ID of controller network
Check TRUE FALSEbError

Ret
 switch error checking on () or off ()

urns:
the previous state, i.e before this call

BOOL Mercury_TranslateError (int errNr, char * szBuffer, int maxlen)
Translate error
Arg

 number to error message.

rror
the message

 if successful, , if the buffer was too small to store the message

uments:

()(p. 18). errNr number of error, as returned from Mercury_GetE
szBuffer pointer to buffer that will store

 size of the buffer maxlen
Returns:

TRUE FALSE

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

9.4. Interface Settings
See the controller user manual for hardware connection details. Only those
interfaces actually implemented in connected hardware can be used.

NOTE

The USB drivers make the USB interface appear to the software as an additional RS-232 COM
port. That port is present only when the Mercury™ USB device is connected and powered up.
The baud rate setting must agree with that set on all devices in the network.

! CAUTION

Never connect the RS-232-IN and USB connectors of the same controller to a PC at
the same time, as damage may result.

9.4.1. RS-232 Settings
• COM Port: Select the desired COM port of the PC, something

like "COM1" or "COM2”. The user will see only the ports available
on the system. If the USB drivers are installed and a Mercury™
Class controller with USB interface is connected and powered
up, the USB interface will appear as an additional COM port.

• Baud Rate: The baud rate of the interface. Default
value is 9600 as shown. The settings here and on the
controller hardware should match.

10. Mercury™ Class Commands

10.1. Functions
 BOOL Mercury_BRA (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_CST (int ID, const char* szAxes, const char * names)
 BOOL Mercury_DEL (int ID, double dSeconds)
 BOOL Mercury_DFF (int ID, const char* szAxes, const double * pdValarray)
 BOOL Mercury_DFH (int ID, const char* szAxes)
 BOOL Mercury_DIO (int ID, const char* szChannels, BOOL *pbValarray)
 BOOL Mercury_GcsCommandset (int ID, char* const szCommand)
 BOOL Mercury_GcsGetAnswer (int ID, char* szAnswer, const int bufsize)
 BOOL Mercury_GcsGetAnswerSize (int ID, int* iAnswerSize)
 BOOL Mercury_GetInputChannelNames(int ID, char* szBuffer, int maxlen);
 BOOL Mercury_GetOutputChannelNames(int ID, char* szBuffer, int maxlen);
 BOOL Mercury_GetRefResult(int ID, const char* szAxes, int* pnResult)
 BOOL Mercury_GOH (int ID, const char* szAxes)
 BOOL Mercury_HLT (int ID, const char* szAxes)
 BOOL Mercury_INI (int ID, const char* szAxes)
 BOOL Mercury_IsMoving (const int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_IsRecordingMacro (int ID, BOOL *pbRecordingMacro)
 BOOL Mercury_IsReferenceOK (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_IsReferencing (int ID, const char* szAxes, BOOL *pbIsReferencing)

Release 1.0.1 www.pi.ws Page 20

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

 BOOL Mercury_IsRunningMacro (int ID, BOOL *pbRunningMacro)
 BOOL Mercury_JDT (int ID, const int* iJoystickIDs, const int* iValarray, int iArraySize)
 BOOL Mercury_JON (int ID, const int* iJoystickIDs, const BOOL* pbValarray, int iArraySize)
 BOOL Mercury_MAC_BEG (int ID, const char *szName)
 BOOL Mercury_MAC_DEL (int ID, const char *szName)
 BOOL Mercury_MAC_END (int ID)
 BOOL Mercury_MAC_NSTART (int ID, const char *szName, int nrRuns)
 BOOL Mercury_MAC_START (int ID, const char *szName)
 BOOL Mercury_MEX (int ID, const char *szCondition)
 BOOL Mercury_MNL (int ID, const char* szAxes)
 BOOL Mercury_MOV (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_MPL (int ID, const char* szAxes)
 BOOL Mercury_MVR (int ID, const char* szAxes, double *pdValarray)
 int* pnDelay)
 BOOL Mercury_POS (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qBRA (int ID, char *axes, int maxlen)
 BOOL Mercury_qCST (int ID, const char* szAxes, char *names, int maxlen)
 BOOL Mercury_qDFF (int ID, const char* szAxes, double * pdValarray)
 BOOL Mercury_qDFH (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qDIO (int ID, const char* szChannels, BOOL *pbValarray)
 BOOL Mercury_qERR (int ID, int *pError)
 BOOL Mercury_qHLP (int ID, char *buffer, int maxlen)
 BOOL Mercury_qIDN (int ID, char *buffer, int maxlen)
 BOOL Mercury_qJAX (int ID, const int* iJoystickIDs, const int* iAxesIDs, int iArraySize, char*

szAxesBuffer, int iBufferSize)
 BOOL Mercury_qJON (int ID, const int* iJoystickIDs, BOOL* pbValarray, int iArraySize)
 BOOL Mercury_qLIM (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_qMAC (int ID, char *szName, char *szBuffer, int maxlen)
 BOOL Mercury_qMOV (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qNLM (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qONT (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_qPLM (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qPOS (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qREF (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_qRON (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_qSAI (int ID, char *axes, int maxlen)
 BOOL Mercury_qSAI_ALL (int ID, char * axes, int maxlen)
 BOOL Mercury_qSPA (int ID, const char* szAxes, const int *iCmdarray, double *dValarray)
 BOOL Mercury_qSRG(int ID, const char* szAxes, const int* iCmdarray, int* iValarray)
 BOOL Mercury_qSVO (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_qTAC (int ID, int * pnNr)
 BOOL Mercury_qTAV(int ID, int nChannel, double* pdValue)
 BOOL Mercury_qTIO (int ID, int* pNr)
 BOOL Mercury_qTMN (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qTMX (int ID, const char* szAxes, double *pdValarray)
 BOOL Mercury_qTNJ (int ID, int* pnNr);
 BOOL Mercury_qTVI (int ID, char *axes, const int maxlen)
 BOOL Mercury_qVEL (int ID, const char* szAxes, double *valarray)
 BOOL Mercury_qVER (int ID, char *buffer, const int maxlen)
 BOOL Mercury_qVST (int ID, char * buffer, int maxlen)
 BOOL Mercury_REF (int ID, const char* szAxes)
 BOOL Mercury_RON (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_SAI (int ID, const char* szOldAxes, const char* szNewAxes)
 BOOL Mercury_SAV (int ID, const char* szAxes)
 BOOL Mercury_SPA (int ID, const char* szAxes, int *iCmdarray, double *dValarray)
 BOOL Mercury_STP (int ID)
 BOOL Mercury_SVO (int ID, const char* szAxes, BOOL *pbValarray)
 BOOL Mercury_VEL (int ID, const char* szAxes, double *valarray)
 BOOL Mercury_WAC (int ID, const char *szCondition)

Release 1.0.1 www.pi.ws Page 21

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

10.2. Detailed Description
These functions encapsulate the GCS ASCII commands supported by
Mercury™ Class controllers and provide some shortcuts to make the work
with these controllers easier. See “Function Calls“ (p. 11) for some general
notes about the parameter syntax. “Types Used in PI Software“ (p. 11) will
give you some general information about the syntax of most commands.

NOTE

Keep in mind that a Network of Mercury™ Class controllers chained together and
connected to a single host PC interface is handled as single a multi-axis controller by
the DLL. Each axis has its own Mercury™ Class controller and the DLL addresses
commands for that axis to that controller.

10.3. Function Documentation

BOOL Mercury_BRA (int ID, const char* szAxes, BOOL * pbValarray)

Corresponding GCS command: BRA
Set brake state for szAxes to on (TRUE) or off (FALSE). Factory power-up default state for the brake
control line is in the “Brake ON” state. INI command sets brake OFF.
Arguments:

iId ID of controller network
szAxes string with axes
pbValarray modes for the specified axes, TRUE for on, FALSE for off

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_CLR (int ID, const char* szAxes)
 Corresponding command: CLR
Clear status of szAxes.

Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_CST (int ID, const char* szAxes, const char * names)
 Corresponding command: CST
Set the types of the stages connected to szAxes. The individual names must be separated by a line-feed
character in the string, rendered by "\n" in the following C source code example:
"M-505.1PD\nM-505.2PD".
Arguments:

Release 1.0.1 www.pi.ws Page 22

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

ID ID of controller network
szAxes identifiers of the stages, if "" or NULL all axes are affected
names string with stage-type names separated by line-feed characters ("\n" in C literals)

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_DEL (int ID, double dmSeconds)
 Corresponding command: DEL
Delay the controller for dmSeconds milliseconds.
Note:

 The delay will only affect the controller network, the function will return immediately! Commands sent
to the controller network during the delay will be queued.

Arguments:
ID ID of controller network
dmSeconds time in milliseconds

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_DFF (int ID, const char* szAxes, const double * pdValarray)
 Corresponding GCS command: DFF
Defines a scale factor by which to divide the basic physical units to get the units to use for szAxes, e.g. a
factor of 25.4 converts the basic physical units of millimeters of all axes in szAxes to inches. See also
Section 11.3 on p. 45.
Arguments:

iId ID of controller network
szAxes string with axes
pdValarray factors for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_DFH (int ID, const char* szAxes)
 Corresponding command: DFH
Makes current positions of szAxes the new home position
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_DIO (int ID, const char* szChannels, BOOL * pbValarray)
 Corresponding command: DIO
Set digital output channels "high" or "low". If pbValarray[index] is TRUE the mode is set to HIGH,
otherwise it is set to LOW. .
Parameters:

ID ID of controller network
szChannels string with digital output channel identifiers; Mercury_GetOutputChannelNames can be
used to retrieve the channel names valid for Mercury_DIO

Release 1.0.1 www.pi.ws Page 23

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

pbValarray array containing the states of specified digital output channels, TRUE for "HIGH", FALSE
for "LOW"

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GcsCommandset (int ID, char* const szCommand)
Sends a GCS command to the controller network.
Arguments:

ID ID of controller network
szCommand the GCS command as string.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GcsGetAnswer (int ID, char* szAnswer, const int bufsize)
Gets the answer to GCS command (see Mercury_GcsCommandset() p. 24).
Arguments:

ID ID of controller network
szAnswer the buffer to receive the answer.

 Bufsize the size of the buffer for the answer.
Returns:

TRUE if successful, FALSE otherwise

BOOL Mercury_GcsGetAnswerSize (int ID, int* pnAnswerSize)
Gets the size of the answer to a GCS command (Mercury_GcsCommandset() (p. 24)).
Arguments:

ID ID of controller network
pnAnswerSize pointer to integer to receive the size of the next answer.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GetInputChannelNames (int ID, char *szBuffer, int maxlen)
Get valid single-character identifiers for installed digital input channels. Each character in the returned
string is the valid channel identifier of an installed digital input channel. For a Mercury™ Class controller
network, the string contains 4 characters for each connected axis (see Section 1.3.2 for details)..
Call Mercury_qDIO() to get the states of the digital inputs.
Parameters:

ID ID of controller network
szBuffer buffer to receive the identifier string
maxlen size of szBuffer, must be given to avoid buffer overflow

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GetOutputChannelNames (int ID, char *szBuffer, int maxlen)
Get valid single-character identifiers for installed digital output channels. Each character in the returned
string is the valid channel identifier of an installed digital output channel. For a Mercury™ Class controller

Release 1.0.1 www.pi.ws Page 24

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

network, the string contains 4 characters for each connected axis (see Section 1.3.2 for details). Call
Mercury_DIO() using these IDs to set the states of the outputs.
Parameters:

ID ID of controller network
szBuffer buffer to receive the identifier string
maxlen size of szBuffer, must be given to avoid buffer overflow

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GetRefResult (int ID, const char* szAxes, int * pnResult)
Get results of last call to Mercury_REF()(p. 39), Mercury_MNL() (p. 30) or Mercury_MPL() (p. 30). If still
referencing or no reference move was started since startup of library, the result is 0. Call Mercury_qREF()
(p. 35) to see which axes have a reference switch. Mercury_REF() can be used only for axes with
reference switches, Mercury_MNL() (p. 30) and Mercury_MPL() (p. 30) for axes with limit switches. Call
Mercury_IsReferencing() to find out if there are axes (still) referencing.
Parameters:

ID ID of controller network
szAxes string with axes, if "" or NULL, result refers to all axes.
pnResult pointer to array of integers to receive result: 1 if successful, 0 if reference move failed, has
not finished yet, or axis does not have the required switch

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_GOH (int ID, const char* szAxes)
 Corresponding command: GOH
Move all axes in szAxes to their home positions.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_HLT (int ID, const char* szAxes)
 Corresponding command: HLT
Halt motion of szAxes smoothly. Does not work for Mercury_MNL, Mercury_MPL or Mercury_REF motion
(use Mercury_ EmergencyStop(), p. Fehler! Textmarke nicht definiert. instead); after axis stops, target
is set to current position. Sets error code 10, whether any motion is stopped or not.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_INI (int ID, const char* szAxes)
 Corresponding command: INI
Initialize szAxes: resets motion control chip for the axis, sets referenced state to "not referenced", sets the
brake control line in the “Brake OFF” state, and if axis was under joystick control, disables the joystick.

Release 1.0.1 www.pi.ws Page 25

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Arguments:
ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_IsMoving (const int ID, const char* szAxes, BOOL * pbValarray)
Check if szAxes are moving. If an axis is moving, the corresponding element of the array will be TRUE,
otherwise FALSE. If no axes are specified, only one boolean value is returned and pbValarray[0] will
contain a composite answer: TRUE if at least one axis is moving, FALSE if no axis is moving.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are affected.
pbValarray pointer to array to receive statuses of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_IsRecordingMacro (int ID, BOOL * pbRecordingMacro)
Check if controller is currently recording a macro.
Note:

With Mercury™ Class controllers with native software, Macro recording mode is a state of the library
only. See “Macro Storage on Controller,” beginning on p. 46 for more details

Arguments:
ID ID of controller network
pbRecordingMacro pointer to boolean to receive answer: TRUE if recording a macro, FALSE
otherwise

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_IsReferenceOK (int ID, const char* szAxes, BOOL * pbValarray)
Check the reference state of the given axes. Call Mercury_qREF() (p. 35) to find out which axes have a
reference switch. Axes with a reference switch can be referenced with Mercury_REF() (p. 39); axes with
limit switches with Mercury_MNL() (p. 30) or Mercury_MPL() (p. 30).
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pbValarray pointer to boolean array to receive answers: TRUE if the axis is referenced-, FALSE if
not

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 26

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_IsReferencing (int ID, const char* szAxes, BOOL * pbIsReferencing)
Check if axis is busy referencing.
Note:

 If you do not specify any axis, you will get back only one BOOL. It will be TRUE if the controller is
referencing any axis.

Arguments:
ID ID of controller network
szAxes string with axes, if "" or NULL single value is returned: TRUE if any axis is being referenced.
pbIsReferencing pointer to boolean array to receive statuses of axes or of the controller, TRUE if
referencing, FALSE otherwise

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_IsRunningMacro (int ID, BOOL * pbRunningMacro)
Corresponding command: #8
Check if controller is currently running a macro
Arguments:

ID ID of controller network
pbRunningMacro pointer to boolean to receive answer: TRUE if a macro is running on at least one of
the devices in the network, FALSE otherwise

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_JDT (int ID, const int* iJoystickIDs, const int* piValarray, int iArraySize)
 Corresponding command: JDT

Load pre-defined joystick response table. The table type can be either 1 for linear or 3 for cubic
response curve.
The cubic curve offers more sensitive control around the middle position and less sensitivity close to
the maximum velocity.

Arguments:
ID ID of controller network
iJoystickIDs array with device numbers of motion-axis controllers, each with a joystick axis attached
piValarray pointer to array with table types for the corresponding joystick axes
iArraySize size of arrays

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_JON (int ID, const int* iJoystickIDs, const BOOL* pbValarray, int
iArraySize)

 Corresponding command: JON
Enable/disable direct joystick control for given motion-controller axes. To enable, set the
corresponding entry in pbValarray to TRUE. The motion-controller axes are identified by the device
number of the Mercury™ Class controller to which the joystick axis is connected (see p. 8). See the
controller User Manual for Device Number setting; typically 4 DIP switches are used to set a negative-
logic, binary value one less than the device number.

Do not enable axes with no physical joystick connected, as uncontrolled motion could occur. The C-
862 Mercury™ DC Motor Controller does not have a joystick port.

Arguments:

Release 1.0.1 www.pi.ws Page 27

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

ID ID of controller network
iJoystickIDs array with device numbers of devices having a directly connected joystick axis
pbValarray pointer to array with joystick enable states for the specified motion-axis controllers (0 for
deactivate, 1 for activate)
iArraySize size of arrays

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_MAC_BEG (int ID, char * szName)
 Corresponding command: MAC BEG
Put the DLL in macro recording mode. See “Macro Storage on Controller,” beginning on p. 46 for details.
This function sets a flag in the library and effects the operation of other functions. Function will fail if
already in recording mode. If successful, the commands that follow become part of the macro, so do not
check error state unless FALSE is returned.
Arguments:

ID ID of controller network
szName name under which macro will be stored in the controller, must of the form aMC0nn where a
is the axis designation of the axis controlled by the controller on which the macro is to be stored and
nn is the ID number for the macro, 0 to 31 (Macro 0 is executed on power up or reset, whether there is
a PC connected or not).

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_IN_MACRO_MODE if a macro is already being recorded

BOOL Mercury_MAC_DEL (int ID, char * szName)
 Corresponding command: MAC DEL
Delete macro with name szName. To find out what macros are available call Mercury_qMAC() (p. 34).
See “Macro Storage on Controller,” beginning on p. 46 for more details
Arguments:

ID ID of controller network
szName name of the macro to delete

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_MAC_END (int ID)
 Corresponding command: MAC END
Take the DLL out of macro recording mode. This function resets a flag in the library and effects the
operation of certain other functions. Function will fail if the DLL is not in recording mode. See “Macro
Storage on Controller,” beginning on p. 46 for more details
Arguments:

ID ID of controller network
Returns:

TRUE if successful, FALSE otherwise
Errors:

 PI_NOT_IN_MACRO_MODE the controller was not recording a macro

Release 1.0.1 www.pi.ws Page 28

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_MAC_NSTART (int ID, char * szName, int nrRuns)
 Corresponding command: MAC START
Start macro with name szName. The macro is repeated nrRuns times. To find out what macros are
available call Mercury_qMAC() (p. 34). See “Macro Storage on Controller,” beginning on p. 46 for more
details.
Arguments:

ID ID of controller network
szName string with name of the macro to start
nrRuns nr of runs

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_MAC_START (int ID, char * szName)
 Corresponding command: MAC START
Start macro with name szName. To find out what macros are available call Mercury_qMAC() (p. 34). See
“Macro Storage on Controller,” beginning on p. 46 for more details.
Arguments:

ID ID of controller network
szName string with name of the macro to start

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_MEX (int ID, char * szCondition)
 Corresponding command: MEX
Stop Macro EXecution due to a given condition of the following type: one given value is compared with a
queried value according to a given rule.
Can only be used in macros.
When the macro interpreter accesses this command the condition is checked. If it is true the current macro
is stopped, otherwise macro execution continues with the next line. If the condition is fulfilled later, it has
no effect.
Valid conditions are

• DIO?, but only the digital I/O channels of the Mercury™ on which the macro is stored can be
queried

• JBS?, but only the button 1 associated with the joystick axis connected to the controller on which
the macro is stored can be queried

 (See “Macro Storage on Controller,” p. 46)
Examples:

Mercury_MEX(ID, “DIO? A = 1”);

 Mercury_MEX(ID, “JBS? 4 1 = 1”);

Arguments:
ID ID of controller network
szCondition string with condition to evaluate

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 29

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_MNL (int ID, const char* szAxes)
 Corresponding command: MNL
For each of the axes in szAxes in turn, reset soft limits and home position, move the axis to its negative
limit switch and back until the limit switch disengages, set the position counter to the minimum position
value and set the reference state to "referenced". This can be used to reference axes without reference
switches. Mercury_MNL() returns before the controller has finished. Call Mercury_IsReferencing() (p.
27) to find out if the axes are still moving and Mercury_GetRefResult() (p. 25) to get the results of the
referencing move. The controller will be "busy" while referencing, so most other commands will cause a
PI_CONTROLLER_BUSY error. Use Mercury_STP() (p. Fehler! Textmarke nicht definiert.) to stop
referencing motion.
Arguments:

ID ID of controller network
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
PI_UNKNOWN_AXIS_IDENTIFIER szAxes contains an invalid axis identifier

BOOL Mercury_MOV (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: MOV
Move szAxes to absolute position.
Arguments:

ID ID of controller network
szAxes string with axes
pdValarray pointer to array with target positions for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_MPL (int ID, const char* szAxes)
 Corresponding command: MPL
For each of the axes in szAxes in turn, reset soft limits and home position, move the axis past its positive
limit switch and back until the limit switch disengages, set the position counter to the maximum position
value, and set the reference state to "referenced" . This can be used to reference axes without reference
switches. Mercury_MPL() returns before the controller has finished. Call Mercury_IsReferencing() (p.
27) to find out if the axes are still moving and Mercury_GetRefResult() (p. 25) to get the results of the
referencing move. The controller will be "busy" while referencing, so most other commands will cause a
PI_CONTROLLER_BUSY error. Use Mercury_STP() (p. 24) to stop referencing motion.
Arguments:

ID ID of controller network
szAxes axes to move.

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_UNKNOWN_AXIS_IDENTIFIER cAxis is no valid axis identifier

BOOL Mercury_MVR (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: MVR
Move szAxes relatively.

Release 1.0.1 www.pi.ws Page 30

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Arguments:
ID ID of controller network
szAxes string with axes
pdValarray pointer to array with distances to move in physical units

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_POS (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: POS
Sets absolute positions (position counters) for given axes. Reference mode for the axes must be OFF. No
motion occurs. See Mercury_RON() for a detailed description of reference mode and how to turn it on and
off. For stages with neither reference nor limit switch, reference mode is automatically OFF.
Note that when the actual position is incorrectly set with this command, stages can be driven into the limit
switch when moving to a position which is thought to be within the travel range of the stage, but actually is
not.
Arguments:

ID ID of controller network
szAxes string with axes
pdValarray pointer to array with absolute positions for the specified axes, in physical units

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_CNTR_CMD_NOT_ALLOWED_FOR_STAGE if the reference mode for any of the given axes is
ON

BOOL Mercury_qBRA (int ID, char * szBuffer, intmaxlen)

 Corresponding GCS command: BRA?
Get axes with brakes.
Arguments:

iId ID of controller network
szBuffer buffer to store the read in string
maxlen size of buffer, must be given to avoid a buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qCST (int ID, const char* szAxes, char * names, const int maxlen)
 Corresponding command: CST?
Get the type names of the connected stages szAxes. The individual names are preceded by the axis
identifier and an equals sign ("=") and followed by an ASCII line-feed character For example
A=M-714.00.1PDLF

B=M-511.HDLF.
Arguments:

ID ID of controller network
szAxes identifiers of the stages, if "" or NULL all axes are queried
names buffer to receive the list of names read in from controller, lines are separated by line-feeds
maxlen size of name, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 31

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qDFF (int ID, const char* szAxes, double * pdValarray)

 Corresponding GCS command: DFF?
Get scale factors for szAxes set with Mercury_DFF()
Arguments:

iId ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to receive factors of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qDFH (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: DFH?
Get displacement of the home position from its default for szAxes in physical units.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to receive the home position displacements of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qDIO (int ID, const char* szChannels, BOOL * pbValarray)
 Corresponding command: DIO?
Get the states of szChannels digital input channel(s).
Parameters:

ID ID of controller network
szChannels string with digital input channel identifiers, if "" or NULL all channels are queried.
pbValarray pointer to array to receive the states of digital input channels: TRUE if "HIGH", FALSE if
"LOW"

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qERR (int ID, int * pError)
 Corresponding command: ERR?
Get the error state of the controller. It is safer to call Mercury_GetError()(p. 18) because this will check
the internal error state of the library first.
Arguments:

ID ID of controller network
pnError pointer to integer to receive error code of the controller

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qHLP (int ID, char * buffer, const int maxlen)
 Corresponding command: HLP?
Read in the help string of the controller. The answer is quite long (up to 3000 characters) so be sure to
provide enough space!.
Arguments:

Release 1.0.1 www.pi.ws Page 32

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

ID ID of controller network
buffer buffer to receive the string read in from controller, lines are separated by line-feed characters.
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qIDN (int ID, char * buffer, const int maxlen)
 Corresponding command: *IDN?
Get identification string of the controller.
Arguments:

ID ID of controller network
buffer buffer to receive the string read in from controller; contains controller hardware full name,
firmware version and date
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qJAX (int ID, const int* iJoystickIDs, const int* iAxesIDs, int iArraySize,
char* szAxesBuffer, int iBufferSize)

 Corresponding command: JAX?
Reports correspondence between joystick port numbers (device numbers) and axis identifiers for axes
with joystick ports.

Arguments:
ID ID of controller network
iJoystickIDs array with device numbers of devices having a directly connected joystick axis
iAxesIDs array with axis IDs of the joystick axes (must be 1 for C-663, which only has 1 joystick axis
per device)
iArraySize size of arrays
buffer buffer to receive the string read in from controller; will contains axis IDs of axes associated
with corresponding joystick axis
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qJON (int ID, const int* iJoystickIDs, BOOL* pbValarray, int
iArraySize)

 Corresponding command: JON?
Gets joystick enable/disable states for given motion-controller axes. The joystick axes are identified by
the device number of the Mercury™ Class controller to which they are connected.(see p. 8) See the
controller User Manual for Device Number setting; typically 4 DIP switches are used to set a negative-
logic, binary value one less than the device number . See also Mercury_JON()

Arguments:
ID ID of controller network
iJoystickIDs array with device numbers of devices having a directly connected joystick axis
pbValarray pointer to array to receive the joystick-axis enable states of the specified motion-
controller axes (0 for deactivated, 1 for activated)
iArraySize size of arrays

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 33

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qLIM (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: LIM?
Check if the given axes have limit switches
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pbValarray pointer to array to receive the limit-switch info: TRUE if axis has limit switches, FALSE if
not

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qMAC (int ID, char * szName, char * szBuffer, const int maxlen)
 Corresponding command: MAC?
Get available macros, or list contents of a specific macro. If szName is empty or NULL, all available
macros are listed in szBuffer, separated with line-feed characters. Otherwise the content of the macro with
name szName is listed, the single lines separated with by line-feed characters. If there are no macros
stored or the requested macro is empty the answer will be "".
Arguments:

ID ID of controller network
szName string with name of the macro to list
szBuffer buffer to receive the string read in from controller, lines are separated by line-feed
characters
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qMOV (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: MOV?
Read the commanded target positions for szAxes.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to be filled with target positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qONT (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: ONT?
Check if szAxes have reached target position.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried and a separate answer provided for each.
pdValarray pointer to array to be filled with current on-target status of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 34

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qPOS (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: POS?
Get the positions of szAxes.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qREF (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: REF?
Check if the given axes have reference switches
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pbValarray pointer to array for answers: TRUE if axis has a reference switch, FALSE if not

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qRON (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: RON?

Gets reference mode for given axes. See Mercury_RON() for a detailed description of reference
mode.

Arguments:
ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried
pbValarray pointer to array to receive reference modes for the specified axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qSAI (int ID, char * axes, const int maxlen)
 Corresponding command: SAI?
Get connected axes. Each character in the returned string is an axis identifier for one connected axis.
Arguments:

ID ID of controller network
axes buffer to receive the string read in
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 35

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qSAI_ALL (int ID, char * axes, int maxlen)

 Corresponding GCS command: SAI? ALL
Get all possible axes, and not only all connected and configured axes as returned by the Mercury_qSAI
function. Each character in the returned string is an axis identifier for one possible axis.
Arguments:

iId ID of controller network
axes buffer to store the read in string
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qSPA (int ID, const char* szAxes, int * iCmdarray, double * dValarray)
 Corresponding command: SPA?
Read parameters for szAxes. For each desired parameter you must specify an axis in szAxes and a
parameter ID in the corresponding element of iCmdarray. See Section 11 on p. 42 for a list of valid
parameter IDs.
Arguments:

ID ID of controller network
szAxes axes for each of which a parameter should be read
iCmdarray IDs of parameters
dValarray array to be filled with the values of the parameters

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_SPA_CMD_ID one of the IDs in iCmdarray is not valid

BOOL Mercury_qSRG (int ID, const char* szAxes, const int * iCmdarray, long *
lValarray)

 Corresponding command: SRG?
Read the values of the specifed registers

ID of the parameters can only be 3, which will read in the signal input lines register
(byte 2 of the C-663 and byte 4 for the C-862). See the Mercury GCS Commands
manual for detailed description of the parameters

.
Arguments:

ID ID of controller network
szAxes axes for each of which a parameter should be read
iCmdarray IDs of parameters
lValarray array to be filled with the values of the registers

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_SPA_CMD_ID one of the IDs in iCmdarray is not valid

BOOL Mercury_qSVO (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: SVO?
Get the servo mode for szAxes
Arguments:

Release 1.0.1 www.pi.ws Page 36

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pbValarray pointer to array to receive the servo-modes of the specified axes: TRUE for "on", FALSE
for "off"

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTAC (int ID, int * pnNr)
 Corresponding command: TAC?
Get the number of installed analog channels.
Parameters:

ID ID of controller network
pnNr pointer to int to receive the number of installed boards

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTAV (int ID, int nChannel, double * pdValue)
 Corresponding command: TAV?
Read analog input.
Parameters:

ID ID of controller network
nChannel index of channel to use (see Section 1.3.2)
pdValue pointer to double for storing the value read from analog input

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTIO (int ID, int * pnINr, int * pnONr)
 Corresponding command: TIO?
Get the number of digital input and output channels installed.
Arguments:

ID ID of controller network
pnINr pointer to int to receive the number of digital input channels installed
pnONr pointer to int to receive the number of digital output channels installed

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTMN (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: TMN?
Get the low end of travel range of szAxes in physical units and relative to the current home position.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to be filled with minimum positions of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 37

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qTMX (int ID, const char* szAxes, double * pdValarray)
 Corresponding command: TMX?
Get the high end of the travel range of szAxes in physical units and relative to the current home position.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to be filled with maximum positions of the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTNJ (int ID, int * pnNr)
 Corresponding command: TNJ?
Get the number of joysticks. Note: the software can not determine if a joystick is actually connected to a C-
663. This is the maximum possible number of joysticks that can be connected to the network..
Parameters:

ID ID of controller network
pnNr pointer to int to receive the number of joysticks

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qTVI (int ID, char * axes, const int maxlen)
 Corresponding command: TVI?
Get list of all characters that can be used as axis identifiers. Each character in the returned string could be
used as a valid axis identifier after being assigned with Mercury_SAI().
Arguments:

ID ID of controller network
axes buffer to receive the string read in
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qVEL (int ID, const char* szAxes, double * valarray)
 Corresponding command: VEL?
Get the velocity settings of szAxes. This is the velocity set to be used for moves.
Arguments:

ID ID of controller network
szAxes string with axes, if "" or NULL all axes are queried.
pdValarray pointer to array to be filled with the velocities of the axes

Returns:
TRUE if successful, FALSE otherwise

Release 1.0.1 www.pi.ws Page 38

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

BOOL Mercury_qVER (int ID, char * buffer, const int maxlen)
 Corresponding command: VER?
Get version of the controller firmware.
Arguments:

ID ID of controller network
buffer buffer to receive the string read in
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_qVST (int ID, char * buffer, int maxlen)
 Corresponding command: VST?
Get the names of stages selectable with Mercury_CST().
Parameters:

ID ID of controller network
buffer buffer to receive the string read in from controller, lines are separated by line-feed characters
maxlen size of buffer, must be given to avoid buffer overflow.

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_REF (int ID, const char* szAxes)
 Corresponding command: REF
For each of the axes in szAxes.turn, reset soft limits and home position, move the axis to its reference
switch (passing it if necessary, to approach from the negative side), set the position counter to the
minimum position value and set the reference state to "referenced." Each axis must be equipped with a
reference switch (use Mercury_qREF() to find out). Mercury_REF() returns before the controller has
finished. Call Mercury_IsReferencing() (p. 27) to find out if the axes are still moving and
Mercury_GetRefResult() (p. 25) to get the results of the referencing move. The controller will be "busy"
while referencing, so most other commands will cause a PI_CONTROLLER_BUSY error. Use
Mercury_STP() (p. Fehler! Textmarke nicht definiert.) to stop reference motion.
Arguments:

ID ID of controller network
szAxes string with axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_RON (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: RON
Sets reference mode for given axes.
If the reference mode of an axis is ON, the axis must be driven to the reference switch (Mercury_REF()) or
to a limit switch (using Mercury_MPL() Mercury_MNL()) before any other motion can be commanded.
If reference mode is OFF, no referencing is required for the axis. Only relative moves can be commanded
(Mercury_MVR()), unless the controller is informed of the actual position with Mercury_POS(). Afterwards,
relative and absolute moves can be commanded.
For stages with neither reference nor limit switch, reference mode is automatically OFF.
Note that when the reference mode is off and the actual position is incorrectly set with Mercury_POS(),
stages can be driven into the limit switch when moving to a position which is thought to be within the travel
range of the stage, but actually is not.

Release 1.0.1 www.pi.ws Page 39

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Arguments:
ID ID of controller network
szAxes string with axes
pbValarray pointer to array to receive the reference modes for the specified axes

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH if the axis has no reference or limit switches, and
reference mode can not be switched ON

BOOL Mercury_SAI (int ID, const char* szOldAxes, const char* szNewAxes)
 Corresponding command: SAI
Rename connected axes. Axis designated by the first character in szOldAxes will be renamed to first
character in szNewAxes, etc. with the remaining characters of the two equal-length strings. User can
change the "names" of axes with this function. The characters in szNewAxes character must not be in use
for another existing axis and must be one of the valid identifiers. All characters in szNewAxes will be
converted to uppercase letters. To find out which characters are valid, call Mercury_qTVI() (p. 38). Only
the last occurrence of an axis identifier in szNewAxes will be used to change the name.
Arguments:

ID ID of controller network
szOldAxes old identifiers of the axes
szNewAxes new identifiers of the axes

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_AXIS_IDENTIFIER if the characters are not valid
 PI_UNKNOWN_AXIS_IDENTIFIER if szOldAxes contains unknown axes
 PI_AXIS_ALREADY_EXISTS if one of szNewAxes is already in use
 PI_INVALID_ARGUMENT if szOldAxes and szNewAxes have different lengths or if a character in
szNewAxes is used for more than one old axis

Release 1.0.1 www.pi.ws Page 40

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

 BOOL Mercury_SPA (int ID, const char* szAxes, int * iCmdarray, double * dValarray)
 Corresponding command: SPA
Set parameters for szAxes. For each parameter you must specify an axis in szAxes and a parameter ID in
the corresponding element of iCmdarray.
Mercury_SPA has two arrays as arguments. The first array has the parameters which have to be
modified, the second one the values. If you want to set the velocity (ID=10) to 0.05, the
acceleration (ID=11) to 8 and the deceleration (ID=12) to 8, you can use the following code (in
C(++) syntax):

char szAxes[] = “AAA”;
int cmd[] = {10, 11, 12};
double values[] = {0.05, 8, 8};
Mercury_SPA(id, szAxes, cmd, values);

szAxes = "AAA" cmd = {10, 11, 12} values = {0.05, 8, 8}
szAxes[0] = 'A' cmd[0] = 10 values[0] = 0.05

szAxes[1] = 'A' cmd[1] = 11 values[1] = 8

szAxes[2] = 'A' cmd[2] = 12 values[2] = 8

Note:

 If the same axis has the same parameter ID more than once, only the last value will be set. For
example Mercury_SPA(id, "AAA", {10, 10, 12}, {0.06, 0.05, 9}) will set the velocity
of 'A' to 0.05 and the deceleration to 9.

Arguments:
ID ID of controller network
szAxes axis for which the parameter should be set
iCmdarray IDs of parameters
dValarray array with the values for the parameters

Returns:
TRUE if successful, FALSE otherwise

Errors:
 PI_INVALID_SPA_CMD_ID one of the IDs in iCmdarray is not valid

BOOL Mercury_STP (int ID)
 Corresponding command: STP
Stop all axes. This includes motion of all axes (Mercury_MOV, Mercury_MVR), referencing motion
(Mercury_MNL, Mercury_MPL, Mercury_REF) and macros.
Sets error code to 10, whether any axis was in motion or not.
Arguments:

ID ID of controller network
Returns:

TRUE if successful, FALSE otherwise

BOOL Mercury_SVO (int ID, const char* szAxes, BOOL * pbValarray)
 Corresponding command: SVO
Set servo-control "on" or "off" (closed-loop / open-loop mode). If pbValarray[index] is FALSE the mode is
"off", if TRUE it is set to "on"
Arguments:

ID ID of controller network

Release 1.0.1 www.pi.ws Page 41

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

szAxes string with axes
pbValarray pointer to boolean array with servo-modes for the specified axes, TRUE for "on", FALSE
for "off"

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_VEL (int ID, const char* szAxes, double * valarray)
 Corresponding command: VEL
Set the velocities to use for moves of szAxes.
Arguments:

ID ID of controller network
szAxes string with axes
pdValarray pointer to array with velocity settings for the axes

Returns:
TRUE if successful, FALSE otherwise

BOOL Mercury_WAC (int ID, char * szCondition)
 Corresponding command: WAC
WAit until a given Condition of the following type occurs: one given value is compared with a queried value
according to a given rule.
Can only be used in macros.
When the macro interpreter accesses this command the condition is checked. If it is true the current macro
is stopped, otherwise macro execution continues with the next line. If the condition is fulfilled later it has no
effect.
Valid conditions are ONT? and DIO?, but only the digital I/O channels or the axis of the Mercury™ on
which the macro is stored can be queried (see Section 12)

Exampe: Mercury_WAC(ID, “ONT? A = 1”);

Arguments:
ID ID of controller network
szCondition string with condition to evaluate

Returns:
TRUE if successful, FALSE otherwise

11. Motion Parameters Overview

11.1. Parameter Handling

! CAUTION

The parameters listed in Section 11.2 are hardware-specific. Incorrect values may
lead to improper operation or damage of your hardware! Change settings only after consultation
with PI.

Most of the parameters listed below describe the physical properties and limits of a
stage. They can be changed by several functions, but modifying them imprudently
could cause damage to the stage. So please handle these parameters with care.

Release 1.0.1 www.pi.ws Page 42

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Generally, parameters should only be changed in real special cases and only after
consultation with PI, especially the servo-loop parameters.
With Mercury_SPA? (p. 36) you can obtain a list of the current parameter values in
RAM.

11.2. Parameter List
Parameter numbers in italics apply to C-663, those in bold to C-862

1 P-Term 0 to 32767 -
2 I-Term 0 to 32767 -
3 D-Term 0 to 32767 -
4 I-Limit 0 to 32767 -
8 Maximum position error 0 to 32767 Counts

10 Maximum allowed velocity > 0 Physical
units

This parameter is a maximum
limit and not the current velocity.
By default the current velocity is
half the maximum allowed
velocity. To change the current
velocity use the VEL() command.

11 Maximum allowed
acceleration

 Physical
units

14 Numerator of the counts
per physical unit factor

1 to 2147483647 - factor = num./denom.
This factor includes the physical
transmission ratio and the
resolution of the stage.

Note: To customize your physical
unit use parameter 18 instead.

15 Denominator of the
counts per physical unit
factor

1 to 2147483647 - factor = num./denom.
This factor includes the physical
transmission ratio and the
resolution of the stage.
Note: To customize your physical
unit use parameter 18 instead.

17 Invert the direction -1 to invert the
direction, else 1

-

18 Scaling factor -
1.7976931348623

1E308 to
1.7976931348623

1E308

- This factor can be used to change
the physical unit of the stage, e.g.
a factor of 25.4 converts a
physical unit of mm to inches.
It is recommended to use the
DFF() command to change this
factor.

19 Rotary stage 1 = rotary stage,
else 0

-

20 Stage has a reference 1 = the stage has
a reference, else

0

-

21 Maximum travel range in
positive direction

0 to 2147483647 Physical
units

22 Value at reference
position

-2147483647 to
2147483647

Physical
units

Release 1.0.1 www.pi.ws Page 43

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

23 Distance from the
negative limit to the
reference position

-2147483647 to
2147483647

Physiccal
units

24 Axis limit mode 0 = positive limit
switch active high
(pos-HI), negative
limit switch active

high (neg-HI)
1 = positive limit
switch active low
(pos-LO), neg-HI
2 = pos-HI, neg-

LO
3 = pos-LO, neg-

LO

-

25 Stage type 0 = DC motor
2 = Voice coil

4 =
Piezo
motor

- Wrong stage type will cause
malfunction.

48 Maximum travel range in
negative direction

-2147483647 to
2147483647

Physiccal
unit

49 Invert the reference 1 = invert the
reference, else 0

-

60 Stage name maximum 15
characters

-

64 Hold Current (HC native
command) in mA

65 Drive Current (DC native
command) in mA

66 Hold Time (HT native
command) in ms

67 max current, max. value
that DC and HC can have,
in mA

Release 1.0.1 www.pi.ws Page 44

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 45

11.3. Transmission Ratio and Scaling Factor
The physical unit used for the stages (i.e. for the axes of the controller) results
from the following interrelation of some stage parameters:

SFCpuNCntPU ×⎟⎟
⎞

⎜⎜
⎛

= /
CpuD ⎠⎝

()

CpuD
SFPUCnt ×= / CpuN

Name Number* Description
PU - Physical Unit
Cnt - Counts

CpuN 14 Numerator of the counts per
physical unit factor

CpuD 15 Denominator of the counts
per physical unit factor

SF 18 Scaling factor**

*Number means the parameter ID in Mercury_SPA (p. 41) and Mercury_qSPA (p. 36) and in
the list in Section 11.2.

**See also Mercury_DFF (p. 23).

The "Counts per physical unit factor" which results from parameter 14 divided by
parameter 15 includes the physical transmission ratio and the resolution of the
stage.

CAUTION

To customize the physical unit of a stage do not change parameter 14 and parameter 15 but
use Mercury_DFF (p. 23) instead. Although Mercury_DFF has the same effect as changing
parameter 18 with Mercury_SPA, you should only use Mercury_DFF and not Mercury_SPA to
modify the scaling factor.

Example: If you set with Mercury_DFF a value of 25.4 for an axis, the physical unit
for this axis is converted from mm to inches.

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

12. Macro Storage on Controller
Up to 32 macros can be stored in non-volatile memory on each Mercury™ Class
controller. Macros are stored in the command language of the controller. With
present firmware, this is the Mercury™ native command set.

12.1. Features and Restrictions
The native-command macro storage facility has the following features, which result
in certain restrictions:

 Each macro can contain up to 16 such commands
 The macros are identified by numbers 0 to 31
 Macro 0, if defined, is the autostart macro, which is executed automatically

upon power-up or reset
 Macros are executed on the controller where they are stored, so commands

in a macro may address only the axis and/or I/O channels associated with
that controller (there is no command-interface communication between
controllers). Interaction between separate axes is conceivable only through
suitable programming and hardwiring of I/O lines

 The position values stored in the macros are in counts. This means that a
macro may not work properly if run when different stage types are
connected to the controller. A different stage could have a very different
travel ratio and thus move to a position far different from the one intended.

12.2. Native Macro Recording Mechanism
A macro is stored on the controller by placing it in a compound command
beginning with the native command MDn, (define macro n). See the Mercury
Native Commands manual for details.

12.3. Macro Translation by the GCS DLL

12.3.1. Macro Creation from GCS
The GCS macro creation mechanism involves placing a GCS controller in macro-
recording mode, sending it commands, and then exiting macro recording mode.
While in macro-recording mode, the controller neither executes nor responds to
commands, but simply stores them in the macro.
In normal operation, the GCS DLL translates GCS-based functions to Mercury™
native commands. The GCS macro-recording mechanism is easily translated to
native commands with the use of a macro-recording flag in the DLL. While the flag
is set, DLL function calls create native commands as usual but they are saved
rather than sent to the controller. When recording is completed
(Mercury_MAC_END() function), the saved commands are assembled into a
compound command beginning with MD, given a cursory check, and, if they are
acceptable, the macro definition compound command is sent to the controller.
Here are some of the implications:

 The DLL may decide not to send the macro to the controller at all. Whether
or not the macro was sent can be checked with Mercury_qERR after
Mercury_MAC_END(): If the macro was not sent, error -1010 will be set.
(Admittedly, the error-description text can be misleading)

Release 1.0.1 www.pi.ws Page 46

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

Release 1.0.1 www.pi.ws Page 47

 Referencing operations with REF are allowed, because with the Mercury™
native command set it is possible to tell how to move toward or away from
the reference switch. Because REF is not implemented as single commands
in the native command set, it will occupy more than one command slot in the
macro (see examples below).

 A total of only 16 (native) commands may be stored in a macro on a
Mercury™ Class controller. That means that when using GCS commands
which translate to multiple native commands (e.g. REF, INI), little space may
be left for other commands.

 The way in which a GCS function is translated into a native command can
depend on the stage connected and how it was referenced. A macro made
under one set of conditions will not function properly if run under others*. As
a result:

o Macros are only valid for the stage type that was connected when
the macro was created.

o Only relative moves can be used without concern in macros
o Absolute moves require the axis to have been referenced with

exactly the same sequence of referencing commands when the
macro is run as when it was created. (Note that having the software
save positions at shutdown and restore them from saved values
involves RON/POS referencing.)**

 The macro names used at the GCS level are assigned using the following
strict convention: aMC0nn where a is the current axis designator associated
with the controller and nn is a two-digit number between 00 and 31.In
addition, all the MAC commands take an axis designator as an argument.
The macros AMC000, BMC000, etc. (for axes A, B,..., respectively) are the
autostart macros, which are executed automatically upon startup or reset of
the individual axis controller. The name thus already specifies the axis which
the macro addresses.

 Only the following GCS DLL functions are allowable when the macro
recording flag is set. Use of a disallowed command will cause the next MAC
END to set an error.

o Mercury_BRA()
o Mercury_DEL()
o Mercury_DFH()
o Mercury_DIO()
o Mercury_GOH()
o Mercury_HLT()
o Mercury_INI() (generates a large number of native commands in the

macro, see below)
o Mercury_IsRecordingMacro()
o Mercury_MAC START() (macro called must reside on the same

controller)

* For example, position values in millimeters or degrees in GCS motion commands are
converted to counts. The count values are calculated when the macro is created using the
parameters for the stage configured on the corresponding axis (controller).
** Because it is not possible to set the current absolute position to a desired value, but only
to 0, the count values in the controller’s internal position counter after a GCS move to a
given position may be very different depending on how the axis was referenced (with REF,
MNL, MPL or a RON/POS combination),

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

o Mercury_MAC_END() (takes DLL out of Macro Recording Mode)
o Mercury_MEX() with “DIO? <channel> = ” as condition
o Mercury_MEX() with “JBS? <joystick> 1 = ” as condition
o Mercury_MVR()
o Mercury_REF() (generates a large number of native commands in

the macro, see below)
o Mercury_SPA()

Access to the following SPA parameters by macros is
permitted: all others will be ignored:
• 1: P-Term
• 2: I-Term
• 3: D-Term
• 4: I-Limit
• 8: Max.Position Error
• 10: Max. Velocity
• 11: Max Acceleration (muss >200 sein)
• 24: Limit Switch Mode
• 50: No Limit Switch
• 64: Hold Current (HC native command) in mA
• 65: Drive Current (DC native command) in mA
• 66: Hold Time (HT native command) in ms

o Mercury_STP()
o Mercury_SVO()
o Mercury_VEL()
o Mercury_WAC() with “DIO? <channel> = ” as condition (where b

= 1 or 0 for TRUE, FALSE)
o Mercury_WAC() with “ONT? <axis> = 1” as condition

12.3.2. GCS Listing Stored Macros
When the Mercury_qMAC() function is used with a macro name to list the
contents of a macro, the native commands stored on the unit are translated back
to GCS commands (See the GCS Mercury™ Commands Manual, document
MS163E for details), with all the implications that entails.
Functions that cause several native commands to be stored in the macro may not
be recognized when the macro is listed, making it possible to see the GCS
versions of the individual functions (see INI example below).
The native-command versions can, of course, be manipulated by sending the
native commands MDn, TMn, TZ, etc. (Macro Define, Tell Macro n, Tell Macro
Zero) with Mercury_Sendnongcsstring() (see Mercury Native Commands
manual for native command descriptions).
Native commands that have no equivalent in GCS (e.g. FE3) are listed in their
original form as follows:
“<non GCS: FE3>”

Release 1.0.1 www.pi.ws Page 48

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

12.3.3. Macro Translation and Listing Examples

INI

When converted to native commands, INI is separated into all of its separate
functions; when the stored macro is listed with MAC? they are shown as a long list
of separate commands. From the list it is obvious that when INI is used, not many
commands are left before the macro is full. With an M-505.4PD, the dialog can
look as follows:
>>CST DM-505.4PD
>>ERR?
<<0
>>MAC BEG DMC003
>>INI D
>>MAC END
>>ERR?
<<0
>>MAC? DMC003
<<SPA D50 0
<<SPA D24 0
<<BRA D0
<<SPA D1 200
<<SPA D2 150
<<SPA D3 100
<<SPA D8 2000
<<SPA D4 2000
<<SVO D1
<<VEL D25
<<SPA D11 4000000
<<STP

REF

Similarly, REF A, is stored as the following sequence (shown this time in the
native command set):
"SV40000,FE2,WS,MR-40000,WS,FE,WS,SV100000”
This sequence, when read with MAC?, is recognized by the DLL and translated
back to REF A, obscuring the fact that it occupies 8 of the 16 possible command
slots. It can thus be seen, that INI and REF will not both fit in the same macro!

MVR

The relative move sizes entered with MVR and converted into counts using the
parameters of the currently configured stage before being stored. So, if a macro
containing MVR A2 is created with an M-111.2DG configured on axis A and later
an M-505.4PD is configured for A with CST, the macro will read out as MVR A
58.2542.

Release 1.0.1 www.pi.ws Page 49

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

13. Error Codes
The error codes listed here are those of the PI General Command Set. As such,
some are not relevant to C-7XX controllers and will simply never occur with the
systems this manual describes.

Controller Errors

0 PI_CNTR_NO_ERROR No error

1 PI_CNTR_PARAM_SYNTAX Parameter syntax error

2 PI_CNTR_UNKNOWN_COMMAND Unknown command

3 PI_CNTR_COMMAND_TOO_LONG Command length out of limits or
command buffer overrun

4 PI_CNTR_SCAN_ERROR Error while scanning

5 PI_CNTR_MOVE_WITHOUT_REF_OR_NO_SERVO Unallowable move attempted on
unreferenced axis, or move attempted
with servo off

6 PI_CNTR_INVALID_SGA_PARAM Parameter for SGA not valid

7 PI_CNTR_POS_OUT_OF_LIMITS Position out of limits

8 PI_CNTR_VEL_OUT_OF_LIMITS Velocity out of limits

9 PI_CNTR_SET_PIVOT_NOT_POSSIBLE Attempt to set pivot point while U,V
and W not all 0

10 PI_CNTR_STOP Controller was stopped by command

11 PI_CNTR_SST_OR_SCAN_RANGE Parameter for SST or for one of the
embedded scan algorithms out of
range

12 PI_CNTR_INVALID_SCAN_AXES Invalid axis combination for fast scan

13 PI_CNTR_INVALID_NAV_PARAM Parameter for NAV out of range

14 PI_CNTR_INVALID_ANALOG_INPUT Invalid analog channel

15 PI_CNTR_INVALID_AXIS_IDENTIFIER Invalid axis identifier

16 PI_CNTR_INVALID_STAGE_NAME Unknown stage name

17 PI_CNTR_PARAM_OUT_OF_RANGE Parameter out of range

18 PI_CNTR_INVALID_MACRO_NAME Invalid macro name

19 PI_CNTR_MACRO_RECORD Error while recording macro

20 PI_CNTR_MACRO_NOT_FOUND Macro not found

21 PI_CNTR_AXIS_HAS_NO_BRAKE Axis has no brake

22 PI_CNTR_DOUBLE_AXIS Axis identifier specified more than
once

23 PI_CNTR_ILLEGAL_AXIS Illegal axis

24 PI_CNTR_PARAM_NR Incorrect number of parameters

25 PI_CNTR_INVALID_REAL_NR Invalid floating point number

26 PI_CNTR_MISSING_PARAM Parameter missing

Release 1.0.1 www.pi.ws Page 50

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

27 PI_CNTR_SOFT_LIMIT_OUT_OF_RANGE Soft limit out of range

28 PI_CNTR_NO_MANUAL_PAD No manual pad found

29 PI_CNTR_NO_JUMP No more step-response values

30 PI_CNTR_INVALID_JUMP No step-response values recorded

31 PI_CNTR_AXIS_HAS_NO_REFERENCE Axis has no reference sensor

32 PI_CNTR_STAGE_HAS_NO_LIM_SWITCH Axis has no limit switch

33 PI_CNTR_NO_RELAY_CARD No relay card installed

34 PI_CNTR_CMD_NOT_ALLOWED_FOR_STAGE Command not allowed for selected
stage(s)

35 PI_CNTR_NO_DIGITAL_INPUT No digital input installed

36 PI_CNTR_NO_DIGITAL_OUTPUT No digital output configured

37 PI_CNTR_NO_MCM No more MCM responses

38 PI_CNTR_INVALID_MCM No MCM values recorded

39 PI_CNTR_INVALID_CNTR_NUMBER Controller number invalid

40 PI_CNTR_NO_JOYSTICK_CONNECTED No joystick configured

41 PI_CNTR_INVALID_EGE_AXIS Invalid axis for electronic gearing, axis
can not be slave

42 PI_CNTR_SLAVE_POSITION_OUT_OF_RANGE Position of slave axis is out of range

43 PI_CNTR_COMMAND_EGE_SLAVE Slave axis cannot be commanded
directly when electronic gearing is
enabled

44 PI_CNTR_JOYSTICK_CALIBRATION_FAILED Calibration of joystick failed

45 PI_CNTR_REFERENCING_FAILED Referencing failed

46 PI_CNTR_OPM_MISSING OPM (Optical Power Meter) missing

47 PI_CNTR_OPM_NOT_INITIALIZED OPM (Optical Power Meter) not
initialized or cannot be initialized

48 PI_CNTR_OPM_COM_ERROR OPM (Optical Power Meter)
Communication Error

49 PI_CNTR_MOVE_TO_LIMIT_SWITCH_FAILED Move to limit switch failed

50 PI_CNTR_REF_WITH_REF_DISABLED Attempt to reference axis with
referencing disabled

51 PI_CNTR_AXIS_UNDER_JOYSTICK_CONTROL Selected axis is controlled by joystick

52 PI_CNTR_COMMUNICATION_ERROR Controller detected communication
error

53 PI_CNTR_DYNAMIC_MOVE_IN_PROCESS MOV! motion still in progress

54 PI_CNTR_UNKNOWN_PARAMETER Unknown parameter

55 PI_CNTR_NO_REP_RECORDED No commands were recorded with
REP

56 PI_CNTR_INVALID_PASSWORD Password invalid

57 PI_CNTR_INVALID_RECORDER_CHAN Data Record Table does not exist

Release 1.0.1 www.pi.ws Page 51

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

58 PI_CNTR_INVALID_RECORDER_SRC_OPT Source does not exist; number too low
or too high

59 PI_CNTR_INVALID_RECORDER_SRC_CHAN Source Record Table number too low
or too high

60 PI_CNTR_PARAM_PROTECTION Protected Param: current Command
Level (CCL) too low

61 PI_CNTR_AUTOZERO_RUNNING Command execution not possible
while Autozero is running

62 PI_CNTR_NO_LINEAR_AXIS Autozero requires at least one linear
axis

63 PI_CNTR_INIT_RUNNING Initialization still in progress

64 PI_CNTR_READ_ONLY_PARAMETER Parameter is read-only

65 PI_CNTR_PAM_NOT_FOUND Parameter not found in non-volatile
memory

66 PI_CNTR_VOL_OUT_OF_LIMITS Voltage out of limits

67 PI_CNTR_WAVE_TOO_LARGE Not enough memory available for
requested wav curve

68 PI_CNTR_NOT_ENOUGH_DDL_MEMORY not enough memory available for DDL
table; DDL can not be started

69 PI_CNTR_DDL_TIME_DELAY_TOO_LARGE time delay larger than DDL table; DDL
can not be started

70 PI_CNTR_DIFFERENT_ARRAY_LENGTH GCS-array doesn't support different
length; request arrays which have
different length separately

71 PI_CNTR_GEN_SINGLE_MODE_RESTART Attempt to restart the generator while
it is running in single step mode

72 PI_CNTR_ANALOG_TARGET_ACTIVE MOV, MVR, SVA, SVR, STE, IMP and
WGO blocked when analog target is
active

73 PI_CNTR_WAVE_GENERATOR_ACTIVE MOV, MVR, SVA, SVR, STE and IMP
blocked when wave generator is
active

100 PI_LABVIEW_ERROR PI LabVIEW driver reports error. See
source control for details.

200 PI_CNTR_NO_AXIS No stage connected to axis

201 PI_CNTR_NO_AXIS_PARAM_FILE File with axis parameters not found

202 PI_CNTR_INVALID_AXIS_PARAM_FILE Invalid axis parameter file

203 PI_CNTR_NO_AXIS_PARAM_BACKUP Backup file with axis parameters not
found

204 PI_CNTR_RESERVED_204 PI internal error code 204

205 PI_CNTR_SMO_WITH_SERVO_ON SMO with servo on

206 PI_CNTR_UUDECODE_INCOMPLETE_HEADER uudecode: incomplete header

207 PI_CNTR_UUDECODE_NOTHING_TO_DECODE uudecode: nothing to decode

Release 1.0.1 www.pi.ws Page 52

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

208 PI_CNTR_UUDECODE_ILLEGAL_FORMAT uudecode: illegal UUE format

209 PI_CNTR_CRC32_ERROR CRC32 error

210 PI_CNTR_ILLEGAL_FILENAME Illegal file name (must be 8-0 format)

211 PI_CNTR_FILE_NOT_FOUND File not found on controller

212 PI_CNTR_FILE_WRITE_ERROR Error writing file on controller

213 PI_CNTR_DTR_HINDERS_VELOCITY_CHANGE VEL command not allowed in DTR
Command Mode

214 PI_CNTR_POSITION_UNKNOWN Position calculations failed

215 PI_CNTR_CONN_POSSIBLY_BROKEN The connection between controller
and stage may be broken

216 PI_CNTR_ON_LIMIT_SWITCH The connected stage has driven into a
limit switch, call CLR to resume
operation

217 PI_CNTR_UNEXPECTED_STRUT_STOP Strut test command failed because of
an unexpected strut stop

218 PI_CNTR_POSITION_BASED_ON_ESTIMATION Position can be estimated only while
MOV! is running

219 PI_CNTR_POSITION_BASED_ON_INTERPOLATION Position was calculated while MOV is
running

301 PI_CNTR_SEND_BUFFER_OVERFLOW Send buffer overflow

302 PI_CNTR_VOLTAGE_OUT_OF_LIMITS Voltage out of limits

303 PI_CNTR_VOLTAGE_SET_WHEN_SERVO_ON Attempt to set voltage when servo on

304 PI_CNTR_RECEIVING_BUFFER_OVERFLOW Received command is too long

305 PI_CNTR_EEPROM_ERROR Error while reading/writing EEPROM

306 PI_CNTR_I2C_ERROR Error on I2C bus

307 PI_CNTR_RECEIVING_TIMEOUT Timeout while receiving command

308 PI_CNTR_TIMEOUT A lengthy operation has not finished in
the expected time

309 PI_CNTR_MACRO_OUT_OF_SPACE Insufficient space to store macro

310 PI_CNTR_EUI_OLDVERSION_CFGDATA Configuration data has old version
number

311 PI_CNTR_EUI_INVALID_CFGDATA Invalid configuration data

333 PI_CNTR_HARDWARE_ERROR Internal hardware error

555 PI_CNTR_UNKNOWN_ERROR BasMac: unknown controller error

601 PI_CNTR_NOT_ENOUGH_MEMORY not enough memory

602 PI_CNTR_HW_VOLTAGE_ERROR hardware voltage error

603 PI_CNTR_HW_TEMPERATURE_ERROR hardware temperature out of range

1000 PI_CNTR_TOO_MANY_NESTED_MACROS Too many nested macros

1001 PI_CNTR_MACRO_ALREADY_DEFINED Macro already defined

1002 PI_CNTR_NO_MACRO_RECORDING Macro recording not activated

Release 1.0.1 www.pi.ws Page 53

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

1003 PI_CNTR_INVALID_MAC_PARAM Invalid parameter for MAC

1004 PI_CNTR_RESERVED_1004 PI internal error code 1004

2000 PI_CNTR_ALREADY_HAS_SERIAL_NUMBER Controller already has a serial number

4000 PI_CNTR_SECTOR_ERASE_FAILED Sector erase failed

4001 PI_CNTR_FLASH_PROGRAM_FAILED Flash program failed

4002 PI_CNTR_FLASH_READ_FAILED Flash read failed

4003 PI_CNTR_HW_MATCHCODE_ERROR HW match code missing/invalid

4004 PI_CNTR_FW_MATCHCODE_ERROR FW match code missing/invalid

4005 PI_CNTR_HW_VERSION_ERROR HW version missing/invalid

4006 PI_CNTR_FW_VERSION_ERROR FW version missing/invalid

4007 PI_CNTR_FW_UPDATE_ERROR FW Update failed

Interface Errors

0 COM_NO_ERROR No error occurred during function call

-1 COM_ERROR Error during com operation (could not
be specified)

-2 SEND_ERROR Error while sending data

-3 REC_ERROR Error while receiving data

-4 NOT_CONNECTED_ERROR Not connected (no port with given ID
open)

-5 COM_BUFFER_OVERFLOW Buffer overflow

-6 CONNECTION_FAILED Error while opening port

-7 COM_TIMEOUT Timeout error

-8 COM_MULTILINE_RESPONSE There are more lines waiting in buffer

-9 COM_INVALID_ID There is no interface or DLL handle
with the given ID

-10 COM_NOTIFY_EVENT_ERROR Event/message for notification could
not be opened

-11 COM_NOT_IMPLEMENTED Function not supported by this
interface type

-12 COM_ECHO_ERROR Error while sending "echoed" data

-13 COM_GPIB_EDVR IEEE488: System error

-14 COM_GPIB_ECIC IEEE488: Function requires GPIB
board to be CIC

-15 COM_GPIB_ENOL IEEE488: Write function detected no
listeners

-16 COM_GPIB_EADR IEEE488: Interface board not
addressed correctly

-17 COM_GPIB_EARG IEEE488: Invalid argument to function
call

Release 1.0.1 www.pi.ws Page 54

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

-18 COM_GPIB_ESAC IEEE488: Function requires GPIB
board to be SAC

-19 COM_GPIB_EABO IEEE488: I/O operation aborted

-20 COM_GPIB_ENEB IEEE488: Interface board not found

-21 COM_GPIB_EDMA IEEE488: Error performing DMA

-22 COM_GPIB_EOIP IEEE488: I/O operation started before
previous operation completed

-23 COM_GPIB_ECAP IEEE488: No capability for intended
operation

-24 COM_GPIB_EFSO IEEE488: File system operation error

-25 COM_GPIB_EBUS IEEE488: Command error during
device call

-26 COM_GPIB_ESTB IEEE488: Serial poll-status byte lost

-27 COM_GPIB_ESRQ IEEE488: SRQ remains asserted

-28 COM_GPIB_ETAB IEEE488: Return buffer full

-29 COM_GPIB_ELCK IEEE488: Address or board locked

-30 COM_RS_INVALID_DATA_BITS RS-232: 5 data bits with 2 stop bits is
an invalid combination, as is 6, 7, or 8
data bits with 1.5 stop bits

-31 COM_ERROR_RS_SETTINGS RS-232: Error configuring the COM
port

-32 COM_INTERNAL_RESOURCES_ERROR Error dealing with internal system
resources (events, threads, ...)

-33 COM_DLL_FUNC_ERROR A DLL or one of the required functions
could not be loaded

-34 COM_FTDIUSB_INVALID_HANDLE FTDIUSB: invalid handle

-35 COM_FTDIUSB_DEVICE_NOT_FOUND FTDIUSB: device not found

-36 COM_FTDIUSB_DEVICE_NOT_OPENED FTDIUSB: device not opened

-37 COM_FTDIUSB_IO_ERROR FTDIUSB: IO error

-38 COM_FTDIUSB_INSUFFICIENT_RESOURCES FTDIUSB: insufficient resources

-39 COM_FTDIUSB_INVALID_PARAMETER FTDIUSB: invalid parameter

-40 COM_FTDIUSB_INVALID_BAUD_RATE FTDIUSB: invalid baud rate

-41 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_ERASE FTDIUSB: device not opened for
erase

-42 COM_FTDIUSB_DEVICE_NOT_OPENED_FOR_WRITE FTDIUSB: device not opened for write

-43 COM_FTDIUSB_FAILED_TO_WRITE_DEVICE FTDIUSB: failed to write device

-44 COM_FTDIUSB_EEPROM_READ_FAILED FTDIUSB: EEPROM read failed

-45 COM_FTDIUSB_EEPROM_WRITE_FAILED FTDIUSB: EEPROM write failed

-46 COM_FTDIUSB_EEPROM_ERASE_FAILED FTDIUSB: EEPROM erase failed

-47 COM_FTDIUSB_EEPROM_NOT_PRESENT FTDIUSB: EEPROM not present

Release 1.0.1 www.pi.ws Page 55

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

-48 COM_FTDIUSB_EEPROM_NOT_PROGRAMMED FTDIUSB: EEPROM not programmed

-49 COM_FTDIUSB_INVALID_ARGS FTDIUSB: invalid arguments

-50 COM_FTDIUSB_NOT_SUPPORTED FTDIUSB: not supported

-51 COM_FTDIUSB_OTHER_ERROR FTDIUSB: other error

-52 COM_PORT_ALREADY_OPEN Error while opening the COM port:
was already open

-53 COM_PORT_CHECKSUM_ERROR Checksum error in received data from
COM port

-54 COM_SOCKET_NOT_READY Socket not ready, you should call the
function again

-55 COM_SOCKET_PORT_IN_USE Port is used by another socket

-56 COM_SOCKET_NOT_CONNECTED Socket not connected (or not valid)

-57 COM_SOCKET_TERMINATED Connection terminated (by peer)

-58 COM_SOCKET_NO_RESPONSE Can't connect to peer

-59 COM_SOCKET_INTERRUPTED Operation was interrupted by a non-
blocked signal

DLL Errors

-1001 PI_UNKNOWN_AXIS_IDENTIFIER Unknown axis identifier

-1002 PI_NR_NAV_OUT_OF_RANGE Number for NAV out of range--must
be in [1,10000]

-1003 PI_INVALID_SGA Invalid value for SGA--must be one of
1, 10, 100, 1000

-1004 PI_UNEXPECTED_RESPONSE Controller sent unexpected response

-1005 PI_NO_MANUAL_PAD No manual control pad installed, calls
to SMA and related commands are
not allowed

-1006 PI_INVALID_MANUAL_PAD_KNOB Invalid number for manual control pad
knob

-1007 PI_INVALID_MANUAL_PAD_AXIS Axis not currently controlled by a
manual control pad

-1008 PI_CONTROLLER_BUSY Controller is busy with some lengthy
operation (e.g. reference move, fast
scan algorithm)

-1009 PI_THREAD_ERROR Internal error--could not start thread

-1010 PI_IN_MACRO_MODE Controller is (already) in macro mode-
-command not valid in macro mode

-1011 PI_NOT_IN_MACRO_MODE Controller not in macro mode--
command not valid unless macro
mode active

-1012 PI_MACRO_FILE_ERROR Could not open file to write or read
macro

Release 1.0.1 www.pi.ws Page 56

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

-1013 PI_NO_MACRO_OR_EMPTY No macro with given name on
controller, or macro is empty

-1014 PI_MACRO_EDITOR_ERROR Internal error in macro editor

-1015 PI_INVALID_ARGUMENT One or more arguments given to
function is invalid (empty string, index
out of range, ...)

-1016 PI_AXIS_ALREADY_EXISTS Axis identifier is already in use by a
connected stage

-1017 PI_INVALID_AXIS_IDENTIFIER Invalid axis identifier

-1018 PI_COM_ARRAY_ERROR Could not access array data in COM
server

-1019 PI_COM_ARRAY_RANGE_ERROR Range of array does not fit the
number of parameters

-1020 PI_INVALID_SPA_CMD_ID Invalid parameter ID given to SPA or
SPA?

-1021 PI_NR_AVG_OUT_OF_RANGE Number for AVG out of range--must
be >0

-1022 PI_WAV_SAMPLES_OUT_OF_RANGE Incorrect number of samples given to
WAV

-1023 PI_WAV_FAILED Generation of wave failed

-1024 PI_MOTION_ERROR Motion error while axis in motion, call
CLR to resume operation

-1025 PI_RUNNING_MACRO Controller is (already) running a
macro

-1026 PI_PZT_CONFIG_FAILED Configuration of PZT stage or
amplifier failed

-1027 PI_PZT_CONFIG_INVALID_PARAMS Current settings are not valid for
desired configuration

-1028 PI_UNKNOWN_CHANNEL_IDENTIFIER Unknown channel identifier

-1029 PI_WAVE_PARAM_FILE_ERROR Error while reading/writing wave
generator parameter file

-1030 PI_UNKNOWN_WAVE_SET Could not find description of wave
form. Maybe WG.INI is missing?

-1031 PI_WAVE_EDITOR_FUNC_NOT_LOADED The WGWaveEditor DLL function was
not found at startup

-1032 PI_USER_CANCELLED The user cancelled a dialog

-1033 PI_C844_ERROR Error from C-844 Controller

-1034 PI_DLL_NOT_LOADED DLL necessary to call function not
loaded, or function not found in DLL

-1035 PI_PARAMETER_FILE_PROTECTED The open parameter file is protected
and cannot be edited

-1036 PI_NO_PARAMETER_FILE_OPENED There is no parameter file open

-1037 PI_STAGE_DOES_NOT_EXIST Selected stage does not exist

Release 1.0.1 www.pi.ws Page 57

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

-1038 PI_PARAMETER_FILE_ALREADY_OPENED There is already a parameter file
open. Close it before opening a new
file

-1039 PI_PARAMETER_FILE_OPEN_ERROR Could not open parameter file

-1040 PI_INVALID_CONTROLLER_VERSION The version of the connected
controller is invalid

-1041 PI_PARAM_SET_ERROR Parameter could not be set with SPA--
parameter not defined for this
controller!

-1042 PI_NUMBER_OF_POSSIBLE_WAVES_EXCEEDED The maximum number of wave
definitions has been exceeded

-1043 PI_NUMBER_OF_POSSIBLE_GENERATORS_EXCEEDED The maximum number of wave
generators has been exceeded

-1044 PI_NO_WAVE_FOR_AXIS_DEFINED No wave defined for specified axis

-1045 PI_CANT_STOP_OR_START_WAV Wave output to axis already
stopped/started

-1046 PI_REFERENCE_ERROR Not all axes could be referenced

-1047 PI_REQUIRED_WAVE_NOT_FOUND Could not find parameter set required
by frequency relation

-1048 PI_INVALID_SPP_CMD_ID Command ID given to SPP or SPP? is
not valid

-1049 PI_STAGE_NAME_ISNT_UNIQUE A stage name given to CST is not
unique

-1050 PI_FILE_TRANSFER_BEGIN_MISSING A uuencoded file transferred did not
start with "begin" followed by the
proper filename

-1051 PI_FILE_TRANSFER_ERROR_TEMP_FILE Could not create/read file on host PC

-1052 PI_FILE_TRANSFER_CRC_ERROR Checksum error when transferring a
file to/from the controller

-1053 PI_COULDNT_FIND_PISTAGES_DAT The PiStages.dat database could not
be found. This file is required to
connect a stage with the CST
command

-1054 PI_NO_WAVE_RUNNING No wave being output to specified
axis

-1055 PI_INVALID_PASSWORD Invalid password

-1056 PI_OPM_COM_ERROR Error during communication with OPM
(Optical Power Meter), maybe no
OPM connected

-1057 PI_WAVE_EDITOR_WRONG_PARAMNUM WaveEditor: Error during wave
creation, incorrect number of
parameters

-1058 PI_WAVE_EDITOR_FREQUENCY_OUT_OF_RANGE WaveEditor: Frequency out of range

-1059 PI_WAVE_EDITOR_WRONG_IP_VALUE WaveEditor: Error during wave
creation, incorrect index for integer
parameter

Release 1.0.1 www.pi.ws Page 58

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

-1060 PI_WAVE_EDITOR_WRONG_DP_VALUE WaveEditor: Error during wave
creation, incorrect index for floating
point parameter

-1061 PI_WAVE_EDITOR_WRONG_ITEM_VALUE WaveEditor: Error during wave
creation, could not calculate value

-1062 PI_WAVE_EDITOR_MISSING_GRAPH_COMPONENT WaveEditor: Graph display
component not installed

-1063 PI_EXT_PROFILE_UNALLOWED_CMD User Profile Mode: Command is not
allowed, check for required
preparatory commands

-1064 PI_EXT_PROFILE_EXPECTING_MOTION_ERROR User Profile Mode: First target
position in User Profile is too far from
current position

-1065 PI_EXT_PROFILE_ACTIVE Controller is (already) in User Profile
Mode

-1066 PI_EXT_PROFILE_INDEX_OUT_OF_RANGE User Profile Mode: Block or Data Set
index out of allowed range

-1067 PI_PROFILE_GENERATOR_NO_PROFILE ProfileGenerator: No profile has been
created yet

-1068 PI_PROFILE_GENERATOR_OUT_OF_LIMITS ProfileGenerator: Generated profile
exceeds limits of one or both axes

-1069 PI_PROFILE_GENERATOR_UNKNOWN_PARAMETER ProfileGenerator: Unknown parameter
ID in Set/Get Parameter command

-1070 PI_PROFILE_GENERATOR_PAR_OUT_OF_RANGE ProfileGenerator: Parameter out of
allowed range

-1071 PI_EXT_PROFILE_OUT_OF_MEMORY User Profile Mode: Out of memory

-1072 PI_EXT_PROFILE_WRONG_CLUSTER User Profile Mode: Cluster is not
assigned to this axis

-1073 PI_UNKNOWN_CLUSTER_IDENTIFIER Unknown cluster identifier

Release 1.0.1 www.pi.ws Page 59

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

14. Index
*IDN? 32
axis parameters 11
BOOL 11
boolen values 11
BRA 21
BRA? 30
c strings 11
CLR 21
Commands 19
CST 21
CST? 31
DEL 22
DFF 22
DFF? 31
DFH 22
DFH? 31
DIO 22
DIO? 31
dynamic loading of a DLL 10
ERR? 32
Error Codes 49
FALSE 11
GetProcAddress - Win32 API function 10
GOH 24
HLP? 32
HLT 24
INI 24
JDT 26, 32
JON 26
JON? 33
LIB - static import library 9
LIM? 33
linking a DLL 9
LoadLibrary - Win32 API function 10
MAC BEG 27
MAC DEL 27
MAC END 27
MAC START 28
MAC? 33
Mercury_ GcsCommandset 23
Mercury_ GcsGetAnswer 23
Mercury_AddStage 16
Mercury_BRA 21
Mercury_CloseConnection 17
Mercury_CLR 21
Mercury_ConnectRS232 17
Mercury_CST 21
Mercury_DEL 22
Mercury_DFF 22
Mercury_DFH 22
Mercury_DIO 22
Mercury_END 27
Mercury_GcsGetAnswerSize 23
Mercury_GetError 17
Mercury_GetInputChannelNames 23
Mercury_GetOutputChannelNames 23
Mercury_GetRefResult 24

Mercury_GOH 24
Mercury_HLT 24
Mercury_INI 24
Mercury_InterfaceSetupDlg 18
Mercury_IsConnected 18
Mercury_IsMoving 25
Mercury_IsRecordingMacro 25
Mercury_IsReferenceOK 25
Mercury_IsReferencing 26
Mercury_IsRunningMacro 26
Mercury_JDT 26
Mercury_JON 26
Mercury_MAC_BEG 27
Mercury_MAC_DMC 27
Mercury_MAC_NSTART 28
Mercury_MAC_START 28
Mercury_MEX 28
Mercury_MNL 29
Mercury_MOV 29
Mercury_MPL 29
Mercury_MVR 30
Mercury_OpenPiStagesEditDialog 16
Mercury_OpenUserStagesEditDialog 17
Mercury_POS 30
Mercury_qBRA 30
Mercury_qCST 31
Mercury_qDFF 31
Mercury_qDFH 31
Mercury_qDIO 31
Mercury_qERR 32
Mercury_qHLP 32
Mercury_qIDN 32
Mercury_qJAX 32
Mercury_qJON 33
Mercury_qLIM 33
Mercury_qMAC 33
Mercury_qMOV 34
Mercury_qONT 34
Mercury_qPOS 34
Mercury_qREF 34
Mercury_qRON 35
Mercury_qSAI 35
Mercury_qSAI_ALL 35
Mercury_qSPA 35
Mercury_qSRG 36
Mercury_qSVO 36
Mercury_qTAC 36
Mercury_qTAV 36
Mercury_qTIO 37
Mercury_qTMN 37
Mercury_qTMX 37
Mercury_qTNJ 37
Mercury_qTVI 38
Mercury_qVEL 38
Mercury_qVER 38
Mercury_qVST 38
Mercury_ReceiveNonGCSString 14

Release 1.0.1 www.pi.ws Page 60

 PI Mercury Windows GCS 1.0 DLL Software Manual MS154E

RS-232 settings 19 Mercury_REF 39
Mercury_RemoveStage 16 SAI 39

SAI? 35 Mercury_RON 39
SAI? ALL 35 Mercury_SAI 39

Mercury_SendNonGCSString 14 settings for RS-232 19
SPA 40 Mercury_SetErrorCheck 18
SPA? 35 Mercury_SPA 40
SRG? 36 Mercury_STP 40
static import library 9 Mercury_SVO 41
STP 40 Mercury_TranslateError 18
SVO 41 Mercury_VEL 41
SVO? 36 Mercury_WAC 41
TAC? 36 MEX 28
TAV? 36 MNL 29
TIO? 37 module definition file 9
TMN? 37 MOV 29
TMX? 37 MOV? 34
TNJ? 37 MPL 29
TRUE 11 MVR 30
TVI? 38 NULL 11
User-defind stages 15 ONT? 34
VEL 41 POS 30
VEL? 38 POS? 34
VER? 38 REF 39
VST? 38 REF? 34
WAC 41 RON 39

RON? 35

Release 1.0.1 www.pi.ws Page 61

	0. Disclaimer
	1. Introduction to MERCURY™ GCS DLL
	1.1. Quick Start
	1.1.1. Software Installation
	1.1.2. Connect the Controller
	1.1.3. Install USB Drivers

	1.2. General Command Set (GCS)
	1.3. Axes and Stages
	1.3.1. Axis Designators
	1.3.2. I/O Line Designators
	1.3.3. Controller Joystick Connections

	1.4. Threads
	1.5. Overview
	1.6. Units and GCS
	1.6.1. Hardware, Physical Units and Scaling
	1.6.2. Rounding Considerations

	2. Referencing
	3. DLL Handling
	3.1. Using a Static Import Library
	3.2. Using a Module Definition File
	3.3. Using Windows API Functions

	4. Function Calls
	4.1. Controller ID
	4.2. Axis Identifiers
	4.3. Axis Parameters

	5. Types Used in PI Software
	5.1. Boolean Values
	5.2. NULL Pointers
	5.3. C-Strings

	6. GCS COM Server
	6.1. No Need for Controller IDs
	6.2. No Need for Buffer Sizes
	6.3. COM Properties

	7. Native Command Gateway
	BOOL Mercury_ReceiveNonGCSString (int ID, char * szAnswer, int bufsize)
	BOOL Mercury_SendNonGCSString (int ID, const char* szCommand)

	8. Functions for User-Defined Stages
	8.1. Function Calls to Edit, Remove and Add Stage Definitions
	8.2. Stage Definition Function Overview
	8.3. Stage Parameter IDs

	9. Communication Initialization
	9.1. Functions
	9.2. Detailed Description
	9.3. Function Documentation
	void Mercury_CloseConnection (int ID)
	int Mercury_ConnectRS232 (int nPortNr, long BaudRate)
	int Mercury_GetError (int ID)
	int Mercury_InterfaceSetupDlg (const char* szRegKeyName)
	BOOL Mercury_IsConnected (int ID)
	BOOL Mercury_SetErrorCheck (int ID, BOOL bErrorCheck)
	BOOL Mercury_TranslateError (int errNr, char * szBuffer, int maxlen)

	9.4. Interface Settings
	9.4.1. RS-232 Settings

	10. Mercury™ Class Commands
	10.1. Functions
	10.2. Detailed Description
	10.3. Function Documentation
	BOOL Mercury_CLR (int ID, const char* szAxes)
	BOOL Mercury_CST (int ID, const char* szAxes, const char * names)
	BOOL Mercury_DEL (int ID, double dmSeconds)
	BOOL Mercury_DFH (int ID, const char* szAxes)
	BOOL Mercury_DIO (int ID, const char* szChannels, BOOL * pbValarray)
	BOOL Mercury_GcsCommandset (int ID, char* const szCommand)
	BOOL Mercury_GcsGetAnswer (int ID, char* szAnswer, const int bufsize)
	BOOL Mercury_GcsGetAnswerSize (int ID, int* pnAnswerSize)
	BOOL Mercury_GetInputChannelNames (int ID, char *szBuffer, int maxlen)
	BOOL Mercury_GetOutputChannelNames (int ID, char *szBuffer, int maxlen)
	BOOL Mercury_GetRefResult (int ID, const char* szAxes, int * pnResult)
	BOOL Mercury_GOH (int ID, const char* szAxes)
	BOOL Mercury_HLT (int ID, const char* szAxes)
	BOOL Mercury_INI (int ID, const char* szAxes)
	BOOL Mercury_IsMoving (const int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_IsRecordingMacro (int ID, BOOL * pbRecordingMacro)
	BOOL Mercury_IsReferenceOK (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_IsReferencing (int ID, const char* szAxes, BOOL * pbIsReferencing)
	BOOL Mercury_IsRunningMacro (int ID, BOOL * pbRunningMacro)
	BOOL Mercury_JDT (int ID, const int* iJoystickIDs, const int* piValarray, int iArraySize)
	BOOL Mercury_JON (int ID, const int* iJoystickIDs, const BOOL* pbValarray, int iArraySize)
	BOOL Mercury_MAC_BEG (int ID, char * szName)
	BOOL Mercury_MAC_DEL (int ID, char * szName)
	BOOL Mercury_MAC_END (int ID)
	BOOL Mercury_MAC_NSTART (int ID, char * szName, int nrRuns)
	BOOL Mercury_MAC_START (int ID, char * szName)
	BOOL Mercury_MEX (int ID, char * szCondition)
	BOOL Mercury_MNL (int ID, const char* szAxes)
	BOOL Mercury_MOV (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_MPL (int ID, const char* szAxes)
	BOOL Mercury_MVR (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_POS (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qCST (int ID, const char* szAxes, char * names, const int maxlen)
	BOOL Mercury_qDFH (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qDIO (int ID, const char* szChannels, BOOL * pbValarray)
	BOOL Mercury_qERR (int ID, int * pError)
	BOOL Mercury_qHLP (int ID, char * buffer, const int maxlen)
	BOOL Mercury_qIDN (int ID, char * buffer, const int maxlen)
	BOOL Mercury_qJAX (int ID, const int* iJoystickIDs, const int* iAxesIDs, int iArraySize, char* szAxesBuffer, int iBufferSize)
	BOOL Mercury_qJON (int ID, const int* iJoystickIDs, BOOL* pbValarray, int iArraySize)
	BOOL Mercury_qLIM (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_qMAC (int ID, char * szName, char * szBuffer, const int maxlen)
	BOOL Mercury_qMOV (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qONT (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_qPOS (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qREF (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_qRON (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_qSAI (int ID, char * axes, const int maxlen)
	BOOL Mercury_qSPA (int ID, const char* szAxes, int * iCmdarray, double * dValarray)
	BOOL Mercury_qSRG (int ID, const char* szAxes, const int * iCmdarray, long * lValarray)
	BOOL Mercury_qSVO (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_qTAC (int ID, int * pnNr)
	BOOL Mercury_qTAV (int ID, int nChannel, double * pdValue)
	BOOL Mercury_qTIO (int ID, int * pnINr, int * pnONr)
	BOOL Mercury_qTMN (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qTMX (int ID, const char* szAxes, double * pdValarray)
	BOOL Mercury_qTNJ (int ID, int * pnNr)
	BOOL Mercury_qTVI (int ID, char * axes, const int maxlen)
	BOOL Mercury_qVEL (int ID, const char* szAxes, double * valarray)
	BOOL Mercury_qVER (int ID, char * buffer, const int maxlen)
	BOOL Mercury_qVST (int ID, char * buffer, int maxlen)
	BOOL Mercury_REF (int ID, const char* szAxes)
	BOOL Mercury_RON (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_SAI (int ID, const char* szOldAxes, const char* szNewAxes)
	 BOOL Mercury_SPA (int ID, const char* szAxes, int * iCmdarray, double * dValarray)
	BOOL Mercury_STP (int ID)
	BOOL Mercury_SVO (int ID, const char* szAxes, BOOL * pbValarray)
	BOOL Mercury_VEL (int ID, const char* szAxes, double * valarray)
	BOOL Mercury_WAC (int ID, char * szCondition)

	11. Motion Parameters Overview
	11.1. Parameter Handling
	11.2. Parameter List
	11.3. Transmission Ratio and Scaling Factor

	12. Macro Storage on Controller
	12.1. Features and Restrictions
	12.2. Native Macro Recording Mechanism
	12.3. Macro Translation by the GCS DLL
	12.3.1. Macro Creation from GCS
	12.3.2. GCS Listing Stored Macros
	12.3.3. Macro Translation and Listing Examples

	13. Error Codes
	14. Index

