
CRIC

Technical view on the
system

Alexey Anisenkov (BINP)

CRIC (Computing Resource Information Catalogue)
The Concept

● CRIC is an Information system

■ CRIC is NOT a monitoring system
■ is NOT a Content Management system (e.g wiki based)
■ is NOT a static Web Application exposed something
■ is NOT a unified Configuration system able to define object structures on fly

from WebUI

CRIC is an Information Model based Web Application

● CRIC implements specific Information Model (Computing Model) and provides
functionality to operates with it

● Mainly, CRIC could be considered as the framework to implement custom
Information model

● The information model behind covers well (at least for ATLAS today) the definition
of Computing Resources and the topology of Distributed Computing in general

● Once we need to extend the functionality of CRIC, we need to check if it affects
the information model and do upgrade it first

Key capabilities of the system

Fundamental concept of the system
including Experiment specific declaration

Fundamental concept of the system
including Experiment specific declaration

 Architecture of the system

● CRIC is based on client-server architecture and offers 2 independent services:
➢ API service (REST-full GET export: JSON, etc; POST update)

 -- mainly used to export data, bulk updates and operated data
programmatically

➢ WebUI portal (AJAX support, JQuery widgets, etc)
 -- mainly used to navigate, browse and declare objects

The services could be hosted on different nodes, LB supports, etc
The sevices for sure use same persistent DB instance

● Various Integrated collectors run by crons to populate DB from external sources
● Internal cron jobs to maintain the system (e.g. clean up db cron)

● The system supports information protection: Authorization is required to modify
the data: Groups, Roles and list of specific permissions could be directly
associated to user (At the moment authorization through SSL certificates is
applied)

http://cric-dev.cern.ch

 Architecture of the system

http://atlas-agis.cern.ch

● General overview of the system services

As an example from ATLAS:
 the list of Applications
(customers) using AGIS for today

Implementation details

➢ The system is built on Django:
a powerful and flexible framework for the development of custom Web
application written in Python

➢ Module based implementation:
 Scalable Django approach makes logic isolation into different applications very
effectively

● plugin based approach

● Shareable applications that could be just reused in separate projects
So that we can make common “core” and attach various plugins into it

➢ MVT based django implementation (Model-View-Controller)

● Model: database layer mapped to python objects (using built-in Django ORM - Object Relational
Mapping) -- no direct dependency to specific database backed

● View: user interface layer splitted into business logic code (called views in Django) and HTML
page templates: views render html templates

● Controller: a set of custom middlewares and django cores enabled the processing of user request
and finally evaluating attached view function to handle user response

➢ High level design and logic separation benefits:
all page “faces” are isolated into html templates that could be configured and
customized (e.g. CMS specific view, ATLAS details, etc)

8

Implementation details (2)

➢ Core functionalities already implemented (and used in AGIS)

● Base form processing and data validations

➢ Simple forms

➢ Forms with changes confirmations

➢ Example forms

➢ Support of separated processing of non models fields

➢ Auto-completion fields, info fields, messages..

➢ Etc..

● Generic data views

➢ Own implementation of (downtime) Calendar integrated into WebUI

➢ Interactive sortable table views (Jquery datatable based)

➢ Tree based views

➢ Built in JSON exports in WebUI (to fetch data client side on WebUI)
9

An example of WebUI: Service creation

10

1. Main AGIS page
contains the links
for manual
service
declaration

● The system automatically collects CE (SRM, PerfSonar, etc) services from
GOCDB/OIM

● What should be done if expected service (for whatever reasons) not defined in the
system
➢ contact atlas-adc-agis@cern.ch in case you consider this as a bug
➢ otherwise just inject missing service manually into the system using WebUI

2. next slide: example of
CE edit/creation form
(new style implementation)

We continuously
improving AGIS WebUI,

providing more useful
views and forms with
incorporated validation
and data checks support
before injecting it into DB

mailto:atlas-adc-agis@cern.ch

An Example of Basic Form

11

➔ Fields grouped by their
meaning into fieldset

➔ integrated popup tooltips
and help messages

➔ Custom validation logic
➔ Pre-validation applied

before saving into DB
➔ Highlight errors in case of

invalid input
➔ auto-generated/default

values for attributes
whenever it possible
(e.g if internal service name
leave empty, the form will
generate appropriate value)

➔ drop-down menu with
possible choices for field

➔ automatic suggestion
while taping

➔ Read only fields

General Features:

An example of changes confirmation of form before final commit

12

Once all input data is successfully validated,
 user needs to confirm the change to be applied

An example of Authorization: How to get access to the system

● Your DN has been changed?
● First time using system to modify site specifics (PandaQueues, DDMEndpoints,

ATLAS Sites, services, etc)
● Need to ask additional admin privileges to operate with AGIS?

 2. Use SSL certificate or
input custom DN name
to be registered

1. Request ADMIN permission
from the main page:
http://cric-dev.cern.ch

3. Select required
permissions

4. Notify atlas-adc-
agis@cern.ch
in case of urgent request

mailto:atlas-adc-agis@cern.ch
mailto:atlas-adc-agis@cern.ch
mailto:atlas-adc-agis@cern.ch

Conclusion… (or start?)

➢ AGIS -> CRIC implements Computing Information model providing fruitful
functionality to operate with data through API and WebUI services

➢ To integrate CMS specific the Information model is need to extended and
completed with CMS use-cases

➢ Once CMS use-cases are identified, CMS specific implementation need to be
applied to CRIC (Experiment Part - “used by” concept): shared functionality from
the core can be reused as well

➢ ATLAS is continuously refactoring AGIS and move into the CORE the
functionality non specific to ATLAS so that it could be used as from the box by
CMS

➢ Plugin based approach makes the customization as much as possible, but still
the core is need to be maintained.

14

