CRIC

Technical view on the
system

Alexey Anisenkov (BINP)

CRIC (Computing Resource Information Catalogue)
The Concept

e CRIC is an Information system

CRIC is NOT a monitoring system

is NOT a Content Management system (e.g wiki based)

is NOT a static Web Application exposed something

is NOT a unified Configuration system able to define object structures on fly
from WebUI

CRIC is an Information Model based Web Application

e CRIC implements specific Information Model (Computing Model) and provides
functionality to operates with it

e Mainly, CRIC could be considered as the framework to implement custom
Information model

e The information model behind covers well (at least for ATLAS today) the definition
of Computing Resources and the topology of Distributed Computing in general

e Once we need to extend the functionality of CRIC, we need to check if it affects
the information model and do upgrade it first

Key capabilities of the system

DEFINE CONNECT COLLECT INTEGRATE DECLARE
topology resources relations status info configyrations

@

ACT! DISTRIBUTE OPERATE COMPLETE
via AP| via WebUI data

Fundamental concept of the system
including Experiment specific declaration

= Clear distinction between resources
provided by (Sites) and resources used by (Experiments)

= Establish relationship between resources to Experiment objects

resources “used by”

resources “provided by”

@ Distributed Computing Resources

P E ;H\\ H
| 2 1 =
.2) {) : (=11

HPC Cloud OIM GOCDE

Providing an abstraction layer from the physical resources the system allows the Experiment to define
their own real organization of the resources, experiment specific topology and own services structures.

Fundamental concept of the system
including Experiment specific declaration

HW/SW rescurces

Experiment usage

Claud OIM

= Distributed Computing Resources

— S
el == 26l
GOCDB

Py

Rediractar

o

FTS

N

iy

LFC

P @

PerfSonar

€

Py
o

L

Frontier
Squid

Central Service

|

|

|

| o
I Qe Jes -

| :

I Computing Elements | Storage Elements
| |

| L

|

| © CE flavours © SE flavours

I ARC-CE GLOBUS HTTP | GrdFTe |
I CREAN-CE| LEG-CE HTCondar-cE| xRooTo | sRm |

stata
slle specifics

A

e

Regional Center

nemes

cavntry
liar_lavel
slte

Experiment Sits

name
Vo _name
cloud
ller_lzvel
slate

Regional Center

Pledges
Iype
yaer
pledge
ragianal_centar

DDMEndpoint
name
encpaint d
M3ES ey guolas tr'lame
% 84 <——-J————- permissions ype
= _I pratacols resource_type
storzge ares l stale stata
I stale_comment queaLes
stale_updale
I used by % schedconfig dale
___________________ e — e —

expenimenl sile
=quid
priority

ddmzendpolnl
starage slemant
aclivity

Site Configurations

experimenl sile
frontier

priority

BXpeEriment sita
sonar services

saurce
destinatian
measurements

Architecture of the system

http://cric-dev.cern.ch

e CRIC is based on client-server architecture and offers 2 independent services:
> APl service (REST-full GET export: JSON, etc; POST update)
-- mainly used to export data, bulk updates and operated data
programmatically
> WebUI portal (AJAX support, JQuery widgets, etc)
-- mainly used to navigate, browse and declare objects

The services could be hosted on different nodes, LB supports, etc
The sevices for sure use same persistent DB instance

e Various Integrated collectors run by crons to populate DB from external sources
Internal cron jobs to maintain the system (e.g. clean up db cron)

e The system supports information protection: Authorization is required to modify
the data: Groups, Roles and list of specific permissions could be directly
associated to user (At the moment authorization through SSL certificates is

applied)

Architecture of the system

e (General overview of the system services

ADC experts
shifters, users
Access control Roles o o
o0
B)
ATLAS-Full
PANDA-Admin ~

External sources

Intermediate JSON cache Downtime
GOCDB for DB population Calendar
collectors
5 MyOSG L E j

Data Loader

& BDII " —>{ T

ata providers

v 3

POST API

JSON@DUMP

regular dumps
of topology data

Master JSON data into JSON backups

© Python Update API
» CURL like RESTTull API
to update data programmatically

REST style API

® JSON export
® XML export
® ToACache.py

EXCERMIONS; o REST style bulk API
© missing objects,
local data
J Automatic agents, ADC services
o Bulk update tools !] Usage Statistics

© ATLAS SW Installation System ©80K queries per week
@ Blacklisting tools (DDM, PanDA)

© Site metrics updater

from 11 unigue hosts,
8 actively used endpoints

ADC applications and services

Usage Statistics

© 800K requests in total per week

from 2k unigue hosts,

30 actively used API endpoints
® Rucio Data Management
o access ToACache data

from each ATLAS node
- cacheable access for :
aggressive clients ;

-
% PanDA services
iy Pilot Factories

P
—

1
¥sam NAGIOS
SSB services w

© SLS monitoring
© PD2P monitor

© FT monitoring

vWLCG Squid Monitoring

© data subscriptions

@ DatRI services

@ Blacklisting services
© FAX applications
@&;{9 HammerCloud

‘% ATLAS Installation System

@ ARC Control Tower
‘% SW auto-setup service

B JA—

As an example from ATLAS:
- the list of Applications
(Customers) using AGIS for today

Implementation details

> The system is built on Django:
a powerful and flexible framework for the development of custom Web
application written in Python

> Module based implementation:
Scalable Django approach makes logic isolation into different applications very

effectively
e plugin based approach

e Shareable applications that could be just reused in separate projects
So that we can make common “core” and attach various plugins into it

> MVT based django implementation (Model-View-Controller)

e Model: database layer mapped to python objects (using built-in Django ORM - Object Relational
Mapping) -- no direct dependency to specific database backed

e View: user interface layer splitted into business logic code (called views in Django) and HTML
page templates: views render html templates

e Controller: a set of custom middlewares and django cores enabled the processing of user request
and finally evaluating attached view function to handle user response

> High level design and logic separation benefits:

Implementation details (2)

> Core functionalities already implemented (and used in AGIS)

e Base form processing and data validations

>

vy YV Y Y

>

Simple forms

Forms with changes confirmations

Example forms

Support of separated processing of non models fields

Auto-completion fields, info fields, messages..

Etc..

e Generic data views

>

>

>

>

Own implementation of (downtime) Calendar integrated into WebUI
Interactive sortable table views (Jquery datatable based)
Tree based views

Built in JSON exports in WebUI (to fetch data client side on WebUI)

An example of WebUI: Service creation

The system automatically collects CE (SRM, PerfSonar, etc) services from

GOCDB/OIM

What should be done if expected service (for whatever reasons) not defined in the

system

> contact atlas-adc-agis@cern.ch in case you consider this as a bug

> otherwise just inject missing service manually into the system using WebUI

SERVICE MANAGEMENT

< 1. > Main AGIS page

n Define 05 zervice

» [Define LFC service

» [Define SE zervice

» [Define CE service

» [Define Redirector service
» [Define PerfSonar service
» [Define Frontier zervice

» [Define Squid service

» [Define Central service

contains the links
for manual
service
declaration

<

(2.) next slide: example of
CE edit/creation form

We continuously
improving AGIS WebUI,

providing more useful
views and forms with
incorporated validation
and data checks support
before injecting it into DB

(new style implementation)

mailto:atlas-adc-agis@cern.ch

An Example of Basic Form o Fo tures:

-> Fields grouped by their
meaning into fieldset
GOCDB/OIM Failed to relsolve sitfe b\- nallne=B._£AIZJ_—SITE—NA[~f1E._ IanDrmatiDn about FBOCDB{"OIM sij:es_automaticallv . .
Site: %%Igét;%lm .E&Igszw;;;tg?g;‘g}:gltselgnl:ot new site \which has been recently declared in 9‘ Integ rated popup tOOItIpS
Flavour: AWS-53-55L (=] and help messages
=> Custom validation logic
_ => Pre-validation applied
type: a5
AGIS Service @) |BNL-ATLAS-AWS-53-55L-53.amazonaws.com before SaV|ng into DB
[settings | => Highlight errors in case of

= invalid input

Endpoint: This field is required.

Is_monitored:) [¥]

g&?gz"m" L} production
this is just a test description 9 auto_generated/d efau It
Description: E‘}

Description [description] x : Values for attributes
whenever it possible

:tct sate: O ;ﬁfi:tﬂam : (e.g if internal service name

comment: DISABLED objects are hidden in JSON exparts by default leave empty, the form will
... 08 settings | generate appropriate value)

e @ [BHEGE => drop-down menu with

is_secure: @ [

ety () IR possible choices for field
T o M () Amazon_ObjectStoreKey - automatlc Suggestlon
while taping

Check input data % Read Only fle|dS

11

type: as

An example of changes confirmation of form before final commit

kinputdata
Once all input data is successfully validated,
user needs to confirm the change to be applied

CRIC - Computing Resource Information Catalog - DEV instance

RC pledges RC site Service Update ObjectStora

Please confirm the changes to be submitted for object BNL-ATLAS-AWS-S3-SSL-s3.amazona’

Affected fields to be updated:

Attention: BNL-ATLAS is DISABLED in AGIS. The site will not be activated after creation of service!

E description: this is just a test description
E is_monitored: True
os_is_secure: Falze
state: DISABLED
[/] status: production
[V] check all

Go back to edit form |

Save & continue

The changes will be =aved, you will be redirected to object description page.

An example of Authorization: How to get access to the system

e Your DN has been changed?

e First time using system to modify site specifics (PandaQueues, DDMEndpoints,
ATLAS Sites, services, etc)

e Need to ask additional admin privileges to operate with AGIS?

< 1.) Request ADMIN permission Use SSL certificate or 3.) Select required
from the main page: input custom DN name permissions
http://cric-dev. .ch :
p-ricric-dev.cem.c to be registered Notify atlas-adc-

agis@cern.ch
‘ in case of urgent request

OPERATIONS
Step 1 of 2

= Crons list
Distinguished Name: |/DC=ch/DC=cern/OU=0rganic Units/OU=Users/JN=anisyonk/CN=677357/CN=Alexey Anisenkov2

= ADMINs List
start again

= Changes log _cuntinue“é
- Request ADMIN |
m privileges Step 2 of 2
[] ATLAS-Full

[] ooM-admin
[] ooM-Blacklisting ‘

Groups:
[] PANDA-Admin

Flease =pecify the privileges for DN=/DC=ch/DC=cern/QU=0rganic Units/OU=U=ers/CN=anisyonk/CN=677987/CN=~Alexey Anisenkowv2

S E0AT o tinue |

mailto:atlas-adc-agis@cern.ch
mailto:atlas-adc-agis@cern.ch
mailto:atlas-adc-agis@cern.ch

Conclusion... (or start?)

AGIS -> CRIC implements Computing Information model providing fruitful
functionality to operate with data through API and WebUI services

To integrate CMS specific the Information model is need to extended and
completed with CMS use-cases

Once CMS use-cases are identified, CMS specific implementation need to be
applied to CRIC (Experiment Part - “used by” concept): shared functionality from
the core can be reused as well

ATLAS is continuously refactoring AGIS and move into the CORE the
functionality non specific to ATLAS so that it could be used as from the box by
CMS

Plugin based approach makes the customization as much as possible, but still
the core is need to be maintained.

14

