
Big Data and Technology Review

1. Introduction

The aim of this document is to review some of the state-of-the-art technology that can

be used to architect the Worldwide LHC Computing Grid (WLCG) monitoring system

for storing and handling big datasets and performing real-time analytics on them. The

proposed architecture will consist of three layers: the batch layer, serving layer and

speed layer.

2. Batch Layer

2.1 Introduction

A batch layer is required to store constantly growing big data and for historical data

analysis that is used to identify patterns such as job failures, popular data, busy sites

and so forth. Many individuals consider Hadoop as the de facto framework for

analysing big data. However, there are many technologies available in the distributed

system such as the Internet that go beyond MapReduce, a programming model for

processing big data that was introduced by Google (1) . In this chapter an attempt will

be made to review such technologies.

2.2 Apache Hadoop: MapReduce and HDFS

The Hadoop stack has been used for many research and commercial products. It has

gone through rigorous implementation and testing, which makes it robust. There are

many Hadoop ecosystems and distributions, but in order to make this review relevant

to the proposed layer, the MapReduce and Hadoop Distributed File System (HDFS)

will be analysed. MapReduce is a programming model that was designed to remove

the complexity of processing data that are geographically scattered around the

distributed infrastructure (1, 2). It hides the complexity of computing in parallel, load

balancing and fault tolerance over a large range of inter-connected machines from

developers.

There are two simple parallel methods; map and reduce are predefined in the

MapReduce programming model and are user-specified methods, so users have

control over how the data should be processed (2). Hadoop was designed taking into

account that moving computing to where the data reside is better than vice versa as it

will reduce bottlenecks in the network, especially when the data that are being

transferred are at the rate of terabytes-to-petabytes (1). Therefore, map and reduce

jobs will be allocated to where the data reside, which will be scheduled by JobTask

Manager as shown in Fig. 1. The data will be read from the local disk (file system);

mapped, with all records being independently processed and key/value pairs

assigned; intermediate results are stored to the local disk and they are shuffled

(transferred to where the reduce jobs are located); and reduced, so that records with

identical keys are processed together and the output is written back to the disk (this

output could be an input to another MapReduce job) (1). Fault tolerance in MapReduce

is supported by periodically checking the heartbeat of the worker nodes, master

failures can be protected against by using check-pointing, an approach used to enable

applications to recover from failure.

Figure 1Hadoop Architecture (3).

The MapReduce framework is built on HDFS and executes I/O operations on it. The

HDFS guarantees: scalability on commodity hardware, fault tolerance, high

throughput, load balance, data integrity and portability (3). It employs master-slave

architecture, which is prone to single point failure. However, it facilitates failover to the

standby server but this is prone to downtime. Data are replicated across disk nodes

for load balancing, fault tolerance and high availability (3).

2.2 Stratosphere

Stratosphere extends the MapReduce model as discussed in section 2.2 with new

operators such as union, iterate, join, cross and cogroup as shown in Fig. 2. All

operators will start working in the memory and when there isn’t enough memory then

the rest of the data will be processed from the disk. The principal concept in

Stratosphere is Parallelisation contracts (PACTs), which categorises three types: input

contract, which suggests how inputs to compute nodes are structured; user function,

which enables developers to program how to transform from inputs to outputs and

output contract, which offers compiler hints to achieve performance improvement (4).

PACTs are data processing objects in the data flow. Input data go through nodes for

transformation, computation, and optimisation in parallel. Stratosphere distributes the

resource manager and execution engine called Nephele, which utilises a master-

slaves structure where the single master node receives a job graph from the upper

layer as grounds to apply for resources by communicating with the resource

administrative unit that is used to manage the computing resources of slave nodes (4).

When adequate resources are available for a certain job, the master node distributes

tasks to slave nodes and keeps track of their progress such as initialisation, running,

completion and so forth.

Figure 2 Stratosphere Operators (4).

2.3 Apache Spark

Apache Spark is an in-memory distributed computing framework (5, 6). It provides a

general programming model supporting iterative classes of algorithms, interactive

applications and algorithms containing common operators such as Map, Reduce, Join,

Filter, GroupBy, Sort, LeftOuterJoin, RightOuterJoin, Count, Union, Cross and so forth

(5). Spark allows the dataset to be kept in the memory by moulding a new memory

abstraction, called Resilient Distributed Datasets (RDDs) (6). Instead of repeated I/O

operation, Spark fetches the dataset once from the file system and directly accesses

it from the memory thereafter, which improves the performance. By storing

intermediate results in the memory, it provides a mechanism for reusing the data to

perform other operations such as iteration.

2.4 Comparison

MapReduce is largely believed to be a solution for batch processing (1). However,

MapReduce barely deals with the instances where the development of procedures

requires the arbitrary mixture of a set of operations, iterative jobs and multiple inputs.

Nevertheless, the above mentioned actions could be achieved by implementing

multiple map and reduce operations. On the contrary, reloading the same data multiple

times from the disk will seriously downgrade the performance. The Spark and

Stratosphere provided a mechanism for overcoming this issue by using inbuilt in-

memory processing and extending the MapReduce framework to support many

operators such as: join, group, iterate, union and cross as shown in Table. 1.

Table 1 Operators comparison.

In brief, MapReduce, Stratosphere and Spark have some common features: load

balancing, and fault tolerance. Stratosphere extends MapReduce, offering further

operations as shown in Fig. 2. Spark provides the in-memory processing mechanism

and supports the interactive analyses. On the other hand Stratosphere offers

optimisation mechanisms.

3 Serving Layer

3.1 Introduction

Batch processing jobs are expected to run for hours, weeks, months or even years,

which is not ideal for monitoring a data- infrastructure such as WLCG. Therefore, a

serving layer is required for ad-hoc interactive queries. A few well known intensive

Internet giants have developed tools to resolve this issue, which will be reviewed in

the following section.

3.2 Apache Drill

Apache Drill is a distributed execution engine that facilitates interactive, ad-hoc

querying heterogeneous data sources on a large scale, which was inspired by

Google's Dremel (7, 8). Its design goal is to scale to 10,000 servers or more and to

process petabytes of data and trillions of records in seconds (8). As shown in Fig. 4,

Drill’s architecture is made up of four components: query languages, which is

responsible for parsing the user’s query and constructing an execution plan; a low-

latency distributed execution engine that provides the scalability and fault tolerance

needed to efficiently query petabytes of data; nested data formats, which are

responsible for supporting various data formats (8). The initial goal is to support the

column-based format used by Dremel (8). Finally, scalable data sources are

responsible for supporting a variety of data sources. The initial focus is to leverage

Hadoop as a data source (8).

Figure 3Apache Drill Architecture (8).

From a distribution perspective, Drillbits, each node’s instance of Drill, uses local

memory and data. Queries can be made from any such instance (8). The co-

ordination, query planning and optimisation, scheduling, and execution are then

distributed.

3.3 Cloudera Impala

Cloudera Impala is a massively parallel processing (MPP) architecture for performing

SQL-like queries on HDFS and HBase storage as shown in Fig. 4, which does not

employ the MapReduce model as other alternatives such as Hive (9). It leverages

techniques such as columnar storage for performing really fast scans in the order of

seconds of huge amounts of data in memory. All data in HDFS or HBase do not require

Extraction, Transformation and Loading (ETL) so can be queried directly without any

data movement or predefined schemas using SQL-like commands. Impala inherits

inbuilt Hadoop security by integrating with Kerberos for authentication and role-based

authorisation (9).

Figure 4 Cloudera Impala (9).

3.4 Facebook’s Presto

Presto is a distributed low-latency, interactive and SQL-compliant query engine

optimised for ad-hoc analysis (10). It also supports the majority of ANSI SQL

subgroups, including complex queries, aggregations, joins, and window functions (10).

All processing is carried out in-memory and pipelined across the network between

steps, which should reduce the read/write to disk thus improving performance. The

shortcomings of the system are its inability to write output data back to tables as it only

supports the read-only mode. In Presto architecture as shown in Fig. 5, there is a

coordinator that receives SQL queries from the client, which it then analyses, parses

and then plans the execution (10). Then the scheduler connects the execution pipeline

and assigns the jobs to worker nodes that reside closer to the data (10). The client

then fetches the results.

The Presto framework is extendable so any storage can be plugged in; however, it

require a connector that provides Presto with metadata, information on which nodes

hold the data, and a way to actually fetch the data as a stream. The current version

provides plugins for the following storage system: HDFS, Hive, HBase and Scribe (10).

Figure 5 Presto Architecture

3.5 Shark

Shark is a large-scale distributed and fault-tolerant, in-memory analytics system

designed to be compatible with Hadoop (11, 12). In particular, Shark is fully compatible

with Hive and supports HiveQL, Hive data formats, user-defined functions, HDFS,

HBase and Amazon S3 (11). Shark provides the users with a mechanism to store or

load their working set of data into custom columnar in-memory store and compresses

them in order to reduce the storage space and execution time. Shark is a component

that sits on top of Spark as shown in Fig. 6, which was discussed in the previous

section. It also supports advanced techniques such as data co-partitioning and

incorporation of machine learning into the workflow (12). Shark architecture contains

an optimiser engine called partial DAG execution, which uses historical data

information to dynamically adjust query and execution plans (12).

Figure 6 Spark stack (11).

3.6 Comparison

Hadoop was never built for real-time interactive ad-hoc querying; it mainly focuses on

offline batch processing. This has resulted in a need for a new stack of technologies

that could resolve high latencies. In recent years a few tools have emerged to address

this issue, which have been listed in a previous section. In brief, Drill, Impala, Presto

and Shark were developed to take advantage of in-memory temporary data locality.

Spark and Drill support long-running queries and ad-hoc queries, whereas Impala and

Presto do not support long running queries.

No fault-tolerance is implemented in Impala or Presto; when a node fails at the

execution time then the queries need to be re-executed. However, Shark utilises an

underlying Spark engine for fault-tolerance by exercising the lineage method, which is

a technique used to recover missing pieces of RDDs by re-computing or rebuilding

from the row data source (12). Impala and Shark were designed to take advantage of

the existing Hive infrastructure, which uses the same metadata. In contrast, Drill and

Presto were developed to provide distributed query abilities across various data

stores. However, the current framework only supports Hadoop. Some of the published

benchmarks state that Shark performs much better than Impala and Presto (13).

However, there aren’t any benchmarks to compare it with Drill due to the fact that it is

still under development. Shark provides a mechanism to utilise complex machine

learning to embed with the analytics dataflow; however, Drill, Presto and Impala do

not support this.

4 Speed Layer

4.1 Introduction

A speed layer is required to perform real-time analytics on fresh data as they are

received. This is required to monitor the infrastructure proactively and trigger actions

so the operation will run smoothly.

4.2 Apache Storm

Apache Storm is a distributed, real-time processing of unbounded streams of the data

system (14). It is considered as an alternative to high-latency batch processing for

processing data in low-latency near real-time. Storm can be embedded with the

queuing and database technologies. It facilitates scalability by enabling users to

determine how many worker nodes are required to execute a job and the number of

parallelism (threads) on the topology configuration. It also uses an independent

Apache technology called Zookeeper for coordinating the cluster, which also supports

a cluster scale (14). The architecture employs a master-slave model (14). The master

node has a daemon called Nimbus, which is responsible for distributing user

applications to worker nodes, allocating jobs to the worker queue and monitoring the

status of the worker nodes, which on failure will restart the node or reassign the task

to other nodes (14). The slave nodes have a daemon called supervisor, which is

accountable for checking the queue for new jobs (14).

Storm uses tuples as its data model, which consists of a list of values. Groups of

spouts and bolts are packaged into a topology, which is then deployed into clusters

that will run infinitely, until killed manually. As shown in Fig. 7, the topology will consist

of spouts, which are the source of streams; bolts, which consume the stream and

process them; and stream grouping, which states how the data should flow (14). Storm

also provides a tool called Distributed RPC, which enables developers to implement

complex functions and execute them in Storm utilising parallelism.

Figure 7 Storm topology (14).

4.3 Simple Scalable Streaming System (S4)

S4 is a distributed general-purpose platform that processes continuous unbounded

streams of data (15). S4 employs the MapReduce and Actor programming models

(15). Therefore, S4 utilises concurrent, decentralised and symmetric architecture, with

each node sharing the same functionality and responsibility, which is imposed by

utilising Apache ZooKeeper in order to coordinate the cluster. There aren’t any special

nodes with special functions. The S4 model facilitates high availability and scalability

on commodity hardware, low-latency by utilising local memory, fault-tolerance by

check-pointing and summoning the standby server to take over the failed server tasks,

and a pluggable framework so that it's more generic and new components can be

plugged in (15).

Figure 8 S4 Architecture (15).

As shown in Fig. 8 processing nodes are the logical clusters of Processing Elements

(PE), an entity that performs computation and transmits messages between PEs by

using data events. The processing nodes are responsible for listening to events,

executing functions on the incoming events, transmitting events and emitting output

events. An event listener in the PN passes incoming events to the processing element

container, which invokes the correct PEs corresponding to the unique key or generates

a new instances of PEs (15). An application can be defined in terms of PEs with simple

processing logic, and the framework instantiates one PE for each unique key in the

stream. The communication layer provides load balancing, failover management and

transport management (15). There are numerous special PEs that are available for

performing tasks such as: count, aggregate, join and so forth (15).

4.4 Amazon Kinesis

Amazon Kinesis is a cloud-based service for real-time processing of high-volume

stream data (16). Just as with any cloud service the Kinesis service is based on a

metering system, which means you pay for the amount of throughputs and HTTP

PUTs transactions used (16). Kinesis is proficient at consuming any amount of data

from any number of sources, scaling up and down as needed. The Kinesis client library

supervises load balancing, coordination and error handling automatically, so the

developer only needs to focus on processing the data as it becomes available.

Figure 9 Kinesis Architecture (16).

As shown in Fig. 9, Kinesis expects two components, which are the producer and

worker (16). The producer accepts data from a source and converts them into a

Kinesis stream, which is partitioned into 50KB data segments, then transferred into

stream using HTTP PUTs methods (16). The worker then takes the data from the

Kinesis stream and processes them. For scalability, the user has to take care of two

things; adding or removing shards, depending on the required throughput capacity,

and using the Kinesis client library and deploying the application into EC2 instance

with the auto-scaling group.

4.5 Apache Samza

This is a distributed stream processing pluggable framework to run continuous

computation on infinite streams of data (17). It’s designed to sit on top of the Kafka

messaging queue for stream processing. It also utilises Apache Yet Another Resource

Negotiator (YARN) for resource management and execution, which is responsible for

deploying tasks in a distributed clusters, stream processor locality, co-partitioning of

streams and providing security (17). The Samza framework is similar to batch

processing as shown in Fig. 10.

Figure 10 Samza Architecture

Samza partitions the message, assigns the partition key and sequence ID, and orders

them in strict sequence. All messages matching the partition key would go to that

partition.

It also facilitates a replayable mechanism so that a message can be reread when

required. The stream processing is done by Samaza Job, which performs logical

transformation on a set of input and emits outputs (17). Fault tolerances are managed

by check-pointing, which enables failure recovery, and state management. This

maintains the state of the intermediate data that need to be passed between

processing; this is kept in the local disk with each task (17).

4.6 Spark Streaming

Spark Streaming is an extension of Spark that supports continuous processing (18,

19). As shown in Fig. 11, Spark Streaming is inspired by a batch system, such as

dividing processing into sufficient sets so that they can be replayed, assigning failed

tasks to other nodes and decreasing batch sizes to tackle low latency (18).

Figure 11 Spark Streaming data flow (19).

Spark Streaming provides two types of operators for building stream applications:

transformation operators, which produce a new DStream from one or more parent

streams, and output operators, which let the program write data to external systems

(18). Spark Streaming supports all operators that are supported in Spark such as:

Map, Reduce, GroupBy, Join and so forth. It also provides a mechanism to aggregate

within a given window of time. It also allows the developer to apply Spark’s in-built

machine learning algorithms, and graph processing algorithms on data streams (19).

It supports checking pointing and fault tolerance, which it inherits from Spark.

4.7 Comparison

The existing large-scale MapReduce data-processing platforms are highly optimised

for batch processing, which typically operates on static data. Therefore, a paradigm

was required to process data in real-time so business critical decisions can be made

on time. This is where the evolution of the stream processing technologies listed above

evolved.

Storm, S4, Samza, Spark Streaming and Amazon Kinesis share the same aim, which

is to provide a distributed, scalable and fault-tolerance infrastructure for processing

continuous streams of data. Storm, Kineses, Samza and S4 are fundamentally like a

pipeline where the source pushes discrete messages, which are then processed a

record at a time. On the other hand, Spark Streaming follows a batch processing model

where messages are collected and then processed at short-time intervals in a batch

manner. However, this is prone to seconds-latencies compared with former

technologies. Nevertheless, Spark does not replicate messages or checkpoints as a

mechanism for fault-tolerance as with the other systems, which are liable to high disk

I/O, network bandwidth usage and overheads of the operations itself. Spark utilises in-

memory storage abstraction (RDD), which tracks the lineage steps used to build it, so

in the event of failures, it can recompute the lost data using the cached steps. Storm

does not support managing states, whereas S4, SAMZA and Kinesis provide tools to

manage them locally or remotely. Storm is user-oriented, as it gives full control to the

developers on how it should be configured so an external database can be used to

store the states; however, this is costly, in terms of performance. Nevertheless, Samza

provides a much better mechanism to minimise remote communication by keeping the

state located locally with the tasks and only when a state is modified, will it invoke a

remote method for an update. To the best of knowledge all the stream platforms

discussed above utilise an in-memory mechanism for processing, except for Amazon

Kinesis. Although in-memory processing accelerates low-latencies, this could raise a

new issue in terms of flushing out the memory, in particular for S4. A complex

application in utilising the S4 framework will generate a large number of unique

processing elements as it has been designed to do so, which will occupy a large

portion of the memory and could degrade performance. However, there is a

mechanism called Time-to-Live that explicitly configures how long the PE should live

without any event communication before the memory is reclaimed, but this will result

in loss of the state of the PE. However, there is a method to overcome this issue by

applying priority or importance of the PE object, which will be customised to the

developer.

5. Summary

In the previous section, a brief overview of the different technology that supports batch

processing, interactive ad-hoc queries and real-time analytics is reviewed. Most of the

technology was developed by companies concentrating on their use cases. For some,

performance is important, whereas for others fault-tolerance and recovery are

important, and only one can be achieved by trading-off the other. So it’s not practical

to have a perfect technology tailored for one requirement. Therefore, it’s important to

distinguish and prioritise what is essential for the desired system and what can be

compromised.

When you have separate technologies for each layer such as batch/ serving / speed

layers, it will become very difficult and complex to maintain the infrastructure. Hence,

it will be interesting to explore the Spark stack as it supports batch processing, ad-hoc

querying and stream processing. It uses the same processing model and data

structures for batch processing and Spark Streaming, which enables ad-hoc queries

on streams and combines streams with historical data using the same high-level APIs.

Therefore, it simplifies development, deployment and maintenance as the codes can

be reused between layers.

References

1. Mackey G, Sehrish S, Bent J, Lopez J, Habib S, Jun Wang. Introducing map-
reduce to high end computing. Petascale data storage workshop, 2008. PDSW '08.
3rd; 2008.

2. Ekanayake J, Pallickara S, Fox G. MapReduce for data intensive scientific
analyses. eScience, 2008. eScience '08. IEEE fourth international conference on;
2008.

3. Attebury G, Baranovski A, Bloom K, Bockelman B, Kcira D, Letts J, et al. Hadoop
distributed file system for the grid. Nuclear science symposium conference record
(NSS/MIC), 2009 IEEE; 2009.

4. Stratosphere [Internet]; 2014; cited April 2014]. Available from:
http://stratosphere.eu/.

5. Apache spark [Internet]; 2014; cited April 2014]. Available from:
http://spark.apache.org.

6. Zaharia M, Chowdhury M, Franklin MJ, Shenker S. Spark: Cluster computing with
working sets. 2010.

7. Melnik S, Gubarev A, Long JJ, Romer G, Shivakumar S, Tolton M, et al. Dremel:
Interactive analysis of web-scale datasets. Proceedings of the VLDB Endowment.
2010;3(1):330-9.

8. Apache drill [Internet]; 2014; cited April 2014]. Available from:
http://incubator.apache.org/drill/.

9. Cloudera impala [Internet]; 2014; cited April 2014]. Available from:
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html.

http://stratosphere.eu/
http://spark.apache.org/
http://incubator.apache.org/drill/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html

10. Presto [Internet]; 2014; cited April 2014]. Available from: http://prestodb.io/.

11. Shark [Internet]; 2014; cited April 2014]. Available from:
http://shark.cs.berkeley.edu/.

12. Xin RS, Rosen J, Zaharia M, Franklin MJ, Shenker S, Stoica I. Shark: SQL and
rich analytics at scale. Proceedings of the ACM SIGMOD international conference on
management of data; 2013.

13. Big data benchmark [Internet]; 2013. Available from:
https://amplab.cs.berkeley.edu/benchmark/.

14. Apache storm [Internet]; 2014; cited April 2014]. Available from:
http://storm.incubator.apache.org/.

15. Neumeyer L, Robbins B, Nair A, Kesari A. S4: Distributed stream computing
platform. Data mining workshops (ICDMW), 2010 IEEE international conference on;
2010.

16. Amazon kinesis [Internet]; 2014; cited April 2014]. Available from:
https://aws.amazon.com/kinesis/.

17. Apache samza [Internet]; 2014; cited April 2014]. Available from:
http://samza.incubator.apache.org/.

18. Zaharia M, Das T, Li H, Hunter T, Shenker S, Stoica I. Discretized streams: A
fault-tolerant model for scalable stream processing. . 2012.

19. Apache spark streaming [Internet]; 2014; cited April 2014]. Available from:
http://spark.apache.org/streaming/.

http://prestodb.io/
http://shark.cs.berkeley.edu/
https://amplab.cs.berkeley.edu/benchmark/
http://storm.incubator.apache.org/
https://aws.amazon.com/kinesis/
http://samza.incubator.apache.org/
http://spark.apache.org/streaming/

