
Big Data and Technology Review 

 

1. Introduction 

The aim of this document is to review some of the state-of-the-art technology that can 

be used to architect the Worldwide LHC Computing Grid (WLCG) monitoring system 

for storing and handling big datasets and performing real-time analytics on them. The 

proposed architecture will consist of three layers: the batch layer, serving layer and 

speed layer.  

 

2. Batch Layer 

 

2.1 Introduction 

A batch layer is required to store constantly growing big data and for historical data 

analysis that is used to identify patterns such as job failures, popular data, busy sites 

and so forth.  Many individuals consider Hadoop as the de facto framework for 

analysing big data. However, there are many technologies available in the distributed 

system such as the Internet that go beyond MapReduce, a programming model for 

processing big data that was introduced by Google (1) . In this chapter an attempt will 

be made to review such technologies. 

 

2.2 Apache Hadoop: MapReduce and HDFS 

The Hadoop stack has been used for many research and commercial products. It has 

gone through rigorous implementation and testing, which makes it robust. There are 

many Hadoop ecosystems and distributions, but in order to make this review relevant 

to the proposed layer, the MapReduce and Hadoop Distributed File System (HDFS) 

will be analysed. MapReduce is a programming model that was designed to remove 

the complexity of processing data that are geographically scattered around the 

distributed infrastructure (1, 2). It hides the complexity of computing in parallel, load 

balancing and fault tolerance over a large range of inter-connected machines from 

developers. 

 

There are two simple parallel methods; map and reduce are predefined in the 

MapReduce programming model and are user-specified methods, so users have 



control over how the data should be processed (2). Hadoop was designed taking into 

account that moving computing to where the data reside is better than vice versa as it 

will reduce bottlenecks in the network, especially when the data that are being 

transferred are at the rate of terabytes-to-petabytes (1). Therefore, map and reduce 

jobs will be allocated to where the data reside, which will be scheduled by JobTask 

Manager as shown in Fig. 1. The data will be read from the local disk (file system); 

mapped, with all records being independently processed and key/value pairs 

assigned; intermediate results are stored to the local disk and they are shuffled 

(transferred to where the reduce jobs are located); and reduced, so that records with 

identical keys are processed together and the output is written back to the disk (this 

output could be an input to another MapReduce job) (1). Fault tolerance in MapReduce 

is supported by periodically checking the heartbeat of the worker nodes, master 

failures can be protected against by using check-pointing, an approach used to enable 

applications to recover from failure. 

 

 

 

 

 

 

 

 

 

 

Figure 1Hadoop Architecture (3). 

 

The MapReduce framework is built on HDFS and executes I/O operations on it. The 

HDFS guarantees: scalability on commodity hardware, fault tolerance, high 

throughput, load balance, data integrity and portability (3). It employs master-slave 

architecture, which is prone to single point failure. However, it facilitates failover to the 

standby server but this is prone to downtime. Data are replicated across disk nodes 

for load balancing, fault tolerance and high availability (3). 

 

 



2.2 Stratosphere 

Stratosphere extends the MapReduce model as discussed in section 2.2 with new 

operators such as union, iterate, join, cross and cogroup as shown in Fig. 2. All 

operators will start working in the memory and when there isn’t enough memory then 

the rest of the data will be processed from the disk. The principal concept in 

Stratosphere is Parallelisation contracts (PACTs), which categorises three types: input 

contract, which suggests how inputs to compute nodes are structured; user function, 

which enables developers to program how to transform from inputs to outputs and 

output contract, which offers compiler hints to achieve performance improvement (4). 

PACTs are data processing objects in the data flow. Input data go through nodes for 

transformation, computation, and optimisation in parallel. Stratosphere distributes the 

resource manager and execution engine called Nephele, which utilises a master-

slaves structure where the single master node receives a job graph from the upper 

layer as grounds to apply for resources by communicating with the resource 

administrative unit that is used to manage the computing resources of slave nodes (4). 

When adequate resources are available for a certain job, the master node distributes 

tasks to slave nodes and keeps track of their progress such as initialisation, running, 

completion and so forth. 

 

 

 

 

 

Figure 2 Stratosphere Operators (4). 

 

2.3 Apache Spark 

Apache Spark is an in-memory distributed computing framework (5, 6). It provides a 

general programming model supporting iterative classes of algorithms, interactive 

applications and algorithms containing common operators such as Map, Reduce, Join, 

Filter, GroupBy, Sort, LeftOuterJoin, RightOuterJoin, Count, Union, Cross and so forth 

(5). Spark allows the dataset to be kept in the memory by moulding a new memory 

abstraction, called Resilient Distributed Datasets (RDDs) (6). Instead of repeated I/O 

operation, Spark fetches the dataset once from the file system and directly accesses 

it from the memory thereafter, which improves the performance. By storing 



intermediate results in the memory, it provides a mechanism for reusing the data to 

perform other operations such as iteration.  

 

 

2.4 Comparison 

MapReduce is largely believed to be a solution for batch processing (1). However, 

MapReduce barely deals with the instances where the development of procedures 

requires the arbitrary mixture of a set of operations, iterative jobs and multiple inputs. 

Nevertheless, the above mentioned actions could be achieved by implementing 

multiple map and reduce operations. On the contrary, reloading the same data multiple 

times from the disk will seriously downgrade the performance. The Spark and 

Stratosphere provided a mechanism for overcoming this issue by using inbuilt in-

memory processing and extending the MapReduce framework to support many 

operators such as: join, group, iterate, union and cross as shown in Table. 1. 

 

 

 

 

  

 

 

 

  

Table 1 Operators comparison. 

 

In brief, MapReduce, Stratosphere and Spark have some common features: load 

balancing, and fault tolerance. Stratosphere extends MapReduce, offering further 

operations as shown in Fig. 2. Spark provides the in-memory processing mechanism 

and supports the interactive analyses. On the other hand Stratosphere offers 

optimisation mechanisms. 

 

 

 

 



3 Serving Layer 

 

3.1 Introduction 

Batch processing jobs are expected to run for hours, weeks, months or even years, 

which is not ideal for monitoring a data- infrastructure such as WLCG. Therefore, a 

serving layer is required for ad-hoc interactive queries. A few well known intensive 

Internet giants have developed tools to resolve this issue, which will be reviewed in 

the following section. 

 

3.2 Apache Drill 

Apache Drill is a distributed execution engine that facilitates interactive, ad-hoc 

querying heterogeneous data sources on a large scale, which was inspired by 

Google's Dremel (7, 8). Its design goal is to scale to 10,000 servers or more and to 

process petabytes of data and trillions of records in seconds (8). As shown in Fig. 4, 

Drill’s architecture is made up of four components: query languages, which is 

responsible for parsing the user’s query and constructing an execution plan; a low-

latency distributed execution engine that provides the scalability and fault tolerance 

needed to efficiently query petabytes of data; nested data formats, which are 

responsible for supporting various data formats (8). The initial goal is to support the 

column-based format used by Dremel (8). Finally, scalable data sources are 

responsible for supporting a variety of data sources. The initial focus is to leverage 

Hadoop as a data source (8).  

 

Figure 3Apache Drill Architecture (8). 



From a distribution perspective, Drillbits, each node’s instance of Drill, uses local 

memory and data. Queries can be made from any such instance (8). The co-

ordination, query planning and optimisation, scheduling, and execution are then 

distributed. 

 

3.3 Cloudera Impala 

Cloudera Impala is a massively parallel processing (MPP) architecture for performing 

SQL-like queries on HDFS and HBase storage as shown in Fig. 4, which does not 

employ the MapReduce model as other alternatives such as Hive (9). It leverages 

techniques such as columnar storage for performing really fast scans in the order of 

seconds of huge amounts of data in memory. All data in HDFS or HBase do not require 

Extraction, Transformation and Loading (ETL) so can be queried directly without any 

data movement or predefined schemas using SQL-like commands. Impala inherits 

inbuilt Hadoop security by integrating with Kerberos for authentication and role-based 

authorisation (9). 

 

 

 

Figure 4 Cloudera Impala (9). 

 

3.4 Facebook’s Presto 

Presto is a distributed low-latency, interactive and SQL-compliant query engine 

optimised for ad-hoc analysis (10). It also supports the majority of ANSI SQL 

subgroups, including complex queries, aggregations, joins, and window functions (10). 

All processing is carried out in-memory and pipelined across the network between 



steps, which should reduce the read/write to disk thus improving performance. The 

shortcomings of the system are its inability to write output data back to tables as it only 

supports the read-only mode. In Presto architecture as shown in Fig. 5, there is a 

coordinator that receives SQL queries from the client, which it then analyses, parses 

and then plans the execution (10). Then the scheduler connects the execution pipeline 

and assigns the jobs to worker nodes that reside closer to the data (10). The client 

then fetches the results. 

 

The Presto framework is extendable so any storage can be plugged in; however, it 

require a connector that provides Presto with metadata, information on which nodes 

hold the data, and a way to actually fetch the data as a stream. The current version 

provides plugins for the following storage system: HDFS, Hive, HBase and Scribe (10). 

 

 

 

 

 

 

 

 

 

 

Figure 5 Presto Architecture 

 

3.5 Shark 

Shark is a large-scale distributed and fault-tolerant, in-memory analytics system 

designed to be compatible with Hadoop (11, 12). In particular, Shark is fully compatible 

with Hive and supports HiveQL, Hive data formats, user-defined functions, HDFS, 

HBase and Amazon S3 (11). Shark provides the users with a mechanism to store or 

load their working set of data into custom columnar in-memory store and compresses 

them in order to reduce the storage space and execution time. Shark is a component 

that sits on top of Spark as shown in Fig. 6, which was discussed in the previous 

section. It also supports advanced techniques such as data co-partitioning and 



incorporation of machine learning into the workflow (12). Shark architecture contains 

an optimiser engine called partial DAG execution, which uses historical data 

information to dynamically adjust query and execution plans (12). 

 

 

 

 

 

 

 

 

 

Figure 6 Spark stack (11). 

3.6 Comparison 

Hadoop was never built for real-time interactive ad-hoc querying; it mainly focuses on 

offline batch processing. This has resulted in a need for a new stack of technologies 

that could resolve high latencies. In recent years a few tools have emerged to address 

this issue, which have been listed in a previous section. In brief, Drill, Impala, Presto 

and Shark were developed to take advantage of in-memory temporary data locality. 

Spark and Drill support long-running queries and ad-hoc queries, whereas Impala and 

Presto do not support long running queries. 

 

No fault-tolerance is implemented in Impala or Presto; when a node fails at the 

execution time then the queries need to be re-executed. However, Shark utilises an 

underlying Spark engine for fault-tolerance by exercising the lineage method, which is 

a technique used to recover missing pieces of RDDs by re-computing or rebuilding 

from the row data source (12). Impala and Shark were designed to take advantage of 

the existing Hive infrastructure, which uses the same metadata. In contrast, Drill and 

Presto were developed to provide distributed query abilities across various data 

stores. However, the current framework only supports Hadoop. Some of the published 

benchmarks state that Shark performs much better than Impala and Presto (13). 

However, there aren’t any benchmarks to compare it with Drill due to the fact that it is 

still under development. Shark provides a mechanism to utilise complex machine 



learning to embed with the analytics dataflow; however, Drill, Presto and Impala do 

not support this. 

 

4 Speed Layer 

 

4.1 Introduction 

A speed layer is required to perform real-time analytics on fresh data as they are 

received. This is required to monitor the infrastructure proactively and trigger actions 

so the operation will run smoothly. 

 

4.2 Apache Storm 

Apache Storm is a distributed, real-time processing of unbounded streams of the data 

system (14). It is considered as an alternative to high-latency batch processing for 

processing data in low-latency near real-time. Storm can be embedded with the 

queuing and database technologies. It facilitates scalability by enabling users to 

determine how many worker nodes are required to execute a job and the number of 

parallelism (threads) on the topology configuration. It also uses an independent 

Apache technology called Zookeeper for coordinating the cluster, which also supports 

a cluster scale (14). The architecture employs a master-slave model (14). The master 

node has a daemon called Nimbus, which is responsible for distributing user 

applications to worker nodes, allocating jobs to the worker queue and monitoring the 

status of the worker nodes, which on failure will restart the node or reassign the task 

to other nodes (14). The slave nodes have a daemon called supervisor, which is 

accountable for checking the queue for new jobs (14).  

 

Storm uses tuples as its data model, which consists of a list of values. Groups of 

spouts and bolts are packaged into a topology, which is then deployed into clusters 

that will run infinitely, until killed manually. As shown in Fig. 7, the topology will consist 

of spouts, which are the source of streams; bolts, which consume the stream and 

process them; and stream grouping, which states how the data should flow (14). Storm 

also provides a tool called Distributed RPC, which enables developers to implement 

complex functions and execute them in Storm utilising parallelism.  

 

 



 

 

 

 

 

 

 

 

 

 

Figure 7 Storm topology (14). 

 

4.3 Simple Scalable Streaming System (S4) 

S4 is a distributed general-purpose platform that processes continuous unbounded 

streams of data (15). S4 employs the MapReduce and Actor programming models 

(15). Therefore, S4 utilises concurrent, decentralised and symmetric architecture, with 

each node sharing the same functionality and responsibility, which is imposed by 

utilising Apache ZooKeeper in order to coordinate the cluster. There aren’t any special 

nodes with special functions. The S4 model facilitates high availability and scalability 

on commodity hardware, low-latency by utilising local memory, fault-tolerance by 

check-pointing and summoning the standby server to take over the failed server tasks, 

and a pluggable framework so that it's more generic and new components can be 

plugged in (15). 

 

Figure 8 S4 Architecture (15). 



As shown in Fig. 8 processing nodes are the logical clusters of Processing Elements 

(PE), an entity that performs computation and transmits messages between PEs by 

using data events. The processing nodes are responsible for listening to events, 

executing functions on the incoming events, transmitting events and emitting output 

events. An event listener in the PN passes incoming events to the processing element 

container, which invokes the correct PEs corresponding to the unique key or generates 

a new instances of PEs (15). An application can be defined in terms of PEs with simple 

processing logic, and the framework instantiates one PE for each unique key in the 

stream. The communication layer provides load balancing, failover management and 

transport management (15). There are numerous special PEs that are available for 

performing tasks such as: count, aggregate, join and so forth (15). 

 

4.4 Amazon Kinesis 

Amazon Kinesis is a cloud-based service for real-time processing of high-volume 

stream data (16). Just as with any cloud service the Kinesis service is based on a 

metering system, which means you pay for the amount of throughputs and HTTP 

PUTs transactions used (16). Kinesis is proficient at consuming any amount of data 

from any number of sources, scaling up and down as needed. The Kinesis client library 

supervises load balancing, coordination and error handling automatically, so the 

developer only needs to focus on processing the data as it becomes available.  

 

Figure 9 Kinesis Architecture (16). 

As shown in Fig. 9, Kinesis expects two components, which are the producer and 

worker (16). The producer accepts data from a source and converts them into a 

Kinesis stream, which is partitioned into 50KB data segments, then transferred into 

stream using HTTP PUTs methods (16). The worker then takes the data from the 

Kinesis stream and processes them. For scalability, the user has to take care of two 

things; adding or removing shards, depending on the required throughput capacity, 



and using the Kinesis client library and deploying the application into EC2 instance 

with the auto-scaling group. 

 

4.5 Apache Samza 

This is a distributed stream processing pluggable framework to run continuous 

computation on infinite streams of data (17). It’s designed to sit on top of the Kafka 

messaging queue for stream processing. It also utilises Apache Yet Another Resource 

Negotiator (YARN) for resource management and execution, which is responsible for 

deploying tasks in a distributed clusters, stream processor locality, co-partitioning of 

streams and providing security (17). The Samza framework is similar to batch 

processing as shown in Fig. 10.  

 

 

 

 

Figure 10 Samza Architecture 

Samza partitions the message, assigns the partition key and sequence ID, and orders 

them in strict sequence. All messages matching the partition key would go to that 

partition. 

 

It also facilitates a replayable mechanism so that a message can be reread when 

required. The stream processing is done by Samaza Job, which performs logical 

transformation on a set of input and emits outputs (17). Fault tolerances are managed 

by check-pointing, which enables failure recovery, and state management. This 

maintains the state of the intermediate data that need to be passed between 

processing; this is kept in the local disk with each task (17). 

 

4.6 Spark Streaming 

Spark Streaming is an extension of Spark that supports continuous processing (18, 

19). As shown in Fig. 11, Spark Streaming is inspired by a batch system, such as 

dividing processing into sufficient sets so  that they can be replayed, assigning failed 

tasks to other nodes and decreasing batch sizes to tackle low latency (18).  

 

 



 

 

 

 

 

 

 

Figure 11 Spark Streaming data flow (19). 

 

Spark Streaming provides two types of operators for building stream applications: 

transformation operators, which produce a new DStream from one or more parent 

streams, and output operators, which let the program write data to external systems 

(18). Spark Streaming supports all operators that are supported in Spark such as: 

Map, Reduce, GroupBy, Join and so forth. It also provides a mechanism to aggregate 

within a given window of time. It also allows the developer to apply Spark’s in-built 

machine learning algorithms, and graph processing algorithms on data streams (19). 

It supports checking pointing and fault tolerance, which it inherits from Spark. 

 

4.7 Comparison 

 

The existing large-scale MapReduce data-processing platforms are highly optimised 

for batch processing, which typically operates on static data. Therefore, a paradigm 

was required to process data in real-time so business critical decisions can be made 

on time. This is where the evolution of the stream processing technologies listed above 

evolved.   

 

Storm, S4, Samza, Spark Streaming and Amazon Kinesis share the same aim, which 

is to provide a distributed, scalable and fault-tolerance infrastructure for processing 

continuous streams of data. Storm, Kineses, Samza and S4 are fundamentally like a 

pipeline where the source pushes discrete messages, which are then processed a 

record at a time. On the other hand, Spark Streaming follows a batch processing model 

where messages are collected and then processed at short-time intervals in a batch 

manner. However, this is prone to seconds-latencies compared with former 

technologies. Nevertheless, Spark does not replicate messages or checkpoints as a 



mechanism for fault-tolerance as with the other systems, which are liable to high disk 

I/O, network bandwidth usage and overheads of the operations itself. Spark utilises in-

memory storage abstraction (RDD), which tracks the lineage steps used to build it, so 

in the event of failures, it can recompute the lost data using the cached steps. Storm 

does not support managing states, whereas S4, SAMZA and Kinesis provide tools to 

manage them locally or remotely. Storm is user-oriented, as it gives full control to the 

developers on how it should be configured so an external database can be used to 

store the states; however, this is costly, in terms of performance. Nevertheless, Samza 

provides a much better mechanism to minimise remote communication by keeping the 

state located locally with the tasks and only when a state is modified, will it invoke a 

remote method for an update. To the best of knowledge all the stream platforms 

discussed above utilise an in-memory mechanism for processing, except for Amazon 

Kinesis. Although in-memory processing accelerates low-latencies, this could raise a 

new issue in terms of flushing out the memory, in particular for S4. A complex 

application in utilising the S4 framework will generate a large number of unique 

processing elements as it has been designed to do so, which will occupy a large 

portion of the memory and could degrade performance. However, there is a 

mechanism called Time-to-Live that explicitly configures how long the PE should live 

without any event communication before the memory is reclaimed, but this will result 

in loss of the state of the PE. However, there is a method to overcome this issue by 

applying priority or importance of the PE object, which will be customised to the 

developer. 

 

5. Summary 

In the previous section, a brief overview of the different technology that supports batch 

processing, interactive ad-hoc queries and real-time analytics is reviewed. Most of the 

technology was developed by companies concentrating on their use cases. For some, 

performance is important, whereas for others fault-tolerance and recovery are 

important, and only one can be achieved by trading-off the other. So it’s not practical 

to have a perfect technology tailored for one requirement. Therefore, it’s important to 

distinguish and prioritise what is essential for the desired system and what can be 

compromised.  

 



When you have separate technologies for each layer such as batch/ serving / speed 

layers, it will become very difficult and complex to maintain the infrastructure. Hence, 

it will be interesting to explore the Spark stack as it supports batch processing, ad-hoc 

querying and stream processing. It uses the same processing model and data 

structures for batch processing and Spark Streaming, which enables ad-hoc queries 

on streams and combines streams with historical data using the same high-level APIs. 

Therefore, it simplifies development, deployment and maintenance as the codes can 

be reused between layers. 
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