<table>
<thead>
<tr>
<th>Presentation</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roundtable with liaisons</td>
<td>Agnieszka: Problem with drop of number of candidates (see minutes from July 26) is solved.</td>
</tr>
</tbody>
</table>
| Z movement study with RASNIK (Arthur) | A movement in z is observed for the OT with the (software) alignment. This is confirmed looking at the RASNIK data, and a similar trend is observed with the BCAM system for the IT. It looks like it would be a real movement of the bridge of the OT.
Open points:
• Compare IT and OT movements.
• What is the sign of the slope? Is it consistent with the other measurements?
• Check individual time periods.
• What is causing the effect? |
| Refitting Z -> mumu with offline alignment (Stephen) | Z mass shows large dependence on phi of produced muons, leading to a broadening of the Z mass peak. Refitting the tracks with the new alignment (using Z -> mu mu) leads to a large reduction of this effect (and to some reduction of the chi2 of the tracks). The effect is much smaller for J/psi -> mu mu.
Overall, there is a 15% improvement for the Z mass width.
Open points:
• Still room for improvement of momentum scale correction and curvature bias.
• What’s the status of the momentum scale correction for Run II? |
| Time resolution in 2016 (Wenhua) | The time-resolution for Bs -> J/psi phi decays was evaluated for 2016 data, in the same way as for 2015 data. The average time resolution is 44.9 +/- 0.1 fs, which is 0.6fs higher than in 2015 (statistical uncertainty only).
Open points:
• Understand improvement of time resolution in 2015/2016 wrt to Run I.
 NB: The resolution is better in all bins of pT.
• Revise list of HLT lines
• Write (internal or public) note (?) |
| Update on tracking efficiencies (Michael) | A closer investigation of the problem with the Velo efficiency shows that difference between the 2nd metal effect in data and the implementation in MC is most pronounced at low eta, which corresponds to the region of the largest data-MC difference for the long method. Investigations with the Velo method on exclusive J/\psi data and MC largely reproduce the difference seen in the long method. Open points:
• For immediate use: Use the results of the long method only, double systematic uncertainty (0.8\% per track).
• Produce new MC samples, with an adapted 2nd metal effect (which should better represent collision data) and check the improvement. |
|---|---|
| Results from throughput test for upgrade reco (Thomas) | Idea is to compare the current upgrade reconstruction with the TDR. Both scenarios, with and without a GEC cut, compare well with the TDR. The largest difference is the PV reconstruction, which is much slower, which is not fully understood. Open points:
• Commit everything to the master branch (i.e. the running upgrade sequence should be available in the master).
• Strengthen communication with parallelization group. |