Multichannel SiPM arrays for the LHCb scintillating fibre tracker

Lukas Gruber
CERN, PH Department, Geneva, Switzerland

On behalf of the LHCb SciFi Tracker Collaboration.
All tests and measurements by EPFL LPHE.

Introduction
A major upgrade of the LHCb detector is foreseen during the LHC LS2 in 2019/2020.

Two main changes:
- 40 MHz trigger-less read-out
- Luminosity μJ$^{-1}$ cm$^{-2}$ ns$^{-1}$ (5x the current)

Several detector systems need to be replaced. In particular, the current downstream tracking system will be exchanged with a large scintillating fibre (SciFi) tracker, resulting in a reduced and homogeneously distributed material budget.

Challenges for the SiPMs in SciFi
- Neutron irradiation of SiPMs leads to a dramatic increase in dark count rate
- Increase in noise cluster rate due to signal-like noise clusters
- Irradiation of fibres leads to reduction of light output seen by the SiPMs
- Low light (single photon) yield after irradiation (10-12 p.e.)

This requires:
- Low dark count rate & low correlated noise
- High PDE

Achieved by:
- Fast read-out (short integration time)
- Cooling to -40°C
- Efficient noise rejection by clustering

Expected cluster rate at 40 MHz read-out: less than 3 MHz per SiPM array

Pulse shape and quenching resistor (R_Q)

The H2017 features a quenching resistor of 520 kΩ, which allows a large operating range. The recovery time is 85 ns with typically 10% channel-to-channel variations due to dependence on R_Q.

We can distinguish three time components:
- $t_{R_1} \approx 1$ ns
- $t_{R_2} \approx 70$ ns
- $t_{R_3} \approx 85$ ns

Breakdown voltage (V_{BD})

To achieve uniform detection efficiency in the SciFi tracker, all SiPM channels are operated at the same over-voltage V_{BD}. V_{BD} measurement prior to installation
- Measurement based on low light spectrum
- Grouping SiPMs with similar V_{BD} together (same bias channel)
- Bias voltage adjustment per channel at FE

Photon detection efficiency (PDE)

A high PDE matching the emission spectrum of the Kuraray SCSF-78 scintillating fibres is an important requirement for the SciFi SiPMs.

PDE measurement:
- Xe light source with monochromator
- Photodiode for light calibration
- Correction for correlated noise and dark counts

Produced status

- All SiPMs have been delivered (5000 in total)
- SiPMs are mounted on flex cables
- QA procedure:
 - Optical inspection for all detectors
 - V_{BD} measurement (all)
 - 2 per 500 detectors: full characterisation

The LHCb SciFi Tracker

The tracking system is going to replace the current inner (silicon strip) and outer (straw tubes) trackers and will cover a total area of 340 m2. It consists of staggered layers of scintillating fibres, which are readout by Silicon Photomultipliers.

- 3 stations (T1, T2, T3) with 4 layers (0°, 5°, 10°)
- Each station is 6 x 5 m2 large
- 8 fibre mats of 2.5 m length per module (128 modules)
- 11,000 km of fibre (250 µm diameter)

Requirements:
- Hit detection efficiency ≈ 99
- Spatial resolution better than 100 µm in the horizontal plane
- X000 ≤ 1% per detection layer
- 35 kGy close to the beam pipe for the fibres
- 6×10^{10} n$_{eq}$/cm2 for the photodetectors

SiPMs for LHCb SciFi

- Customised 12-channel linear arrays (Hamamatsu MPPC S13352 – H2017)
- Channel size 0.25 x 1.62 mm2
- 104 pixels (57.5 x 62.5 µm2) per channel
- Optimised for:
 - High PDE (large pixels)
 - Low after-pulse and cross-talk
 - Thin entrance window (105 µm epoxy layer)

Correlated noise

The detector shows three types of correlated noise: direct cross-talk, delayed cross-talk and after-pulse. Correlated noise probabilities were determined by statistical analysis of waveforms based on a threshold based peak finding and selection algorithm.

After R&D the total correlated noise probability could be reduced to 7% for the H2017 at the operating point $V_B = 3.5$ V. Direct and delayed cross-talk are the dominant sources of noise clusters. Delayed cross-talk can produce ghost clusters in the consecutive bunch crossing.

Observed radiation effects

At the end of the lifetime a fluence of 6×10^{11} n$_{eq}$/cm2 is expected.

We observe:
- Massive increase in dark count rate (DCR)
- Less than 5% PDE change
- Less than 10% change in gain
- No change in cross-talk
- Single photon detection still possible at 6×10^{11} n$_{eq}$/cm2

References