PACIFIC
a readout ASIC for the LHCb Scintillating Fibre Tracker

A. Comerma, D. Gascón, H. Chanal, J. Mazorra, N. Pillet, R. Vandaele, S. Gómez, X. Han*
UB Barcelona, IFIC Valencia (SPA), LPC Clermont Ferrand (FRA), PI Heidelberg (GER)
*Physikalisches Institut, Universität Heidelberg

On behalf of the LHCb SciFi Collaboration

presented at Technology and Instrumentation in Particle Physics 2017
May 23th, Beijing
LHCb Upgrade

increase the luminosity to $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$ to boost significantly the physics reach

- more severe radiation environment
- 40MHz readout triggerless
- $5 \times$ current occupancy

the current Tracking Stations (Gas Straw Tube Tracker + Silicon Tracker) replaced by Scintillating Fibre Tracker

total area 340m^2, resolution $< 100 \mu \text{m}$
Scintillating Fibre Tracker (SciFi)

- 250µm diameter scintillating fibre wound into a 6-layer 2.5m-long fibre mat
 - one end equipped with a mirror
 - read out by SiPM arrays (single channel: 250µm × 1.625mm, 104 pixels)

- 3 × Tracking Stations ⇒ 524,000 SiPM channels

More related talks:
- SciFi-A large Scintillating Fibre Tracker for LHCb by Ulrich Uwer
 23/5/2017 TIPP parallel section
- Characterisation of the Hamamatsu silicon photomultiplier arrays for the LHCb Scintillating Fibre Tracker Upgrade by Axel Kuonen
 23/5/2017 TIPP parallel section
Design Challenges for the Readout ASIC

- handle the long-tail SiPM signals with high detector occupancy?
 - minimize the spillover effect
 - reduce dead time
 - sufficient response plateau

- in total 524,000 SiPM channels to be read out at 40MHz?
 - most efficient way to digitize and process the data
 - low power consumption
PACIFIC - a low Power ASIC for the Scintillating Fibre Tracker

- 64-channel current mode input
- Configurable fast shaper: minimize spillover
- Interleaved gated-integrators per channel: minimize dead time
- 2-bit non-linear digitisation per channel: minimum data for sufficient tracking information
- Adjustable input anode DC voltage (4-bit DAC, 50mV/LSB)

Power consumption <10mW/channel

CMOS 130nm Technology

next version: 320MHz SLVS differential output
Prototype

2013.05 PACIFICr0: preamplifier only
2013.11 PACIFICr1: single channel full analog chain
2014.08 PACIFICr2: 8-channel full analog chain
2015.08 PACIFICr3: 8-channel single-ended output full design
2016.09 PACIFICr4: 64-channel single-ended output full design
2017.03 PACIFICr5: 64-channel differential output full design
2018 - 2019 expected back in May

mass production & detector installation
Preamplifier

- double feedback **current conveyor** (50Ω input impedance, 250MHz bandwidth)
- 4× selectable gains at the output mirror
- closed loop **transimpedance amplifier** to convert current into voltage

block diagram of the PACIFIC preamplifier

PACIFICr4 preamplifier linearity measured with charge injection
Fast Shaper

- **double pole-zero cancellation for the SiPM signals**
 - first pole-zero cancels the slow component from SiPM capacitance and quenching resistor
 - second pole-zero cancels the fast component from trace parasitics and input impedance

- **parameters tunable via slow control registers** to adapt to different types of SiPMs

![block diagram of the PACIFIC shaper](image)
Interleaved Gated Integrators

- one integrator is working, while the other is reset: minimum dead time
- integration synchronized with the system clock

Block diagram of the PACIFIC interleaved gated integrators

PACIFICr4 integrator response measured with light injection

~14ns integration plateau with ≤10% signal variation
Digitisation

- analog signal digitized by three threshold-tunable comparators per channel
- three thresholds based on the cluster algorithm
 - low threshold: noise suppression
 - middle threshold: cluster candidate
 - high threshold: single channel clusters

sketch of a typical cluster produced when particles passing through the SciFi detector
Light Injection Result

- 5ns-width light pulse generated by vertical-cavity surface-emitting lasers (VCSEL)
- using SciFi custom SiPM arrays

PACIFIC threshold scan result: clear photo-peak steps
Test Beam at DESY 2017

- DESY beamline T22, Feb 2017
- 1~6 GeV electrons (maximum rate @ 2 GeV) continuous beam

SciFi prototype module
covered in black blanket for light tightness

cooling bar
to keep the SiPM temperature stable

wire-bonded PACIFICr4
with glob top

SciFi SiPM array
with flex cable

SciFi module read out by custom SiPM arrays and PACIFICr4
Cluster Size & Spatial Resolution

Cluster size [Channels]

Entries

Gaussian least squares fit

σ = (89.6 ± 0.4) μm

Data

Residual [μm]
Conclusions and Future Plans

- a low power ASIC designed for the LHCb Scintillating Fibre Tracker
 - configurable fast shaper
 - minimum integration dead time
 - 40MHz readout
 - 2-bit data per channel to encode signal amplitude

- the full design prototype has been evaluated in the test beam at DESY in Feb 2017

- a new version with SLVS differential output submitted and will be back soon

- plan to launch engineering run at the end of 2017
Thank you!

Questions?