PACIFIC: SiPM Readout ASIC for LHCb Upgrade

H. Chanal, A. Comerma, D. Gascón, S. Gómez, X. Han, J. Mazorra*, N. Pillet, R. Vandaele

on behalf of the LHCb SciFi group

*IFIC (Valencia) and PI (Heidelberg)
Outline

1. Introduction
2. PACIFIC
 - Preamplifier
 - Shaper
 - Integrator
 - Digitizer
3. Prototypes
 - PACIFICr0/1
 - PACIFICr2/3
4. Outlook
Physics measurements limited by 1 MHz hardware trigger.

Upgrade: increased luminosity, 40 MHz trigger at front-end.

New detector for T1-T3 the Scintillating Fibre Tracker.

- 3 stations × 4 planes (x-u-v-x).
- 12 modules per plane.
- 6 layer fibre mats (mirrored).
- 8x2.5 m mats per module.
- 2 ROB (top/bottom) with 16 SiPMs and FE electronics.
Readout with 64 channel in CMOS 130 nm (IBM → TSMC).

Current mode input for direct anode connection.

Configurable non-linear digital output serialized.

Fast shaping to minimize spillover.

Signal integration to overcome low photostatistics using dual interleaved system to avoid dead time.

Single photoelectron detection capability.
PACIFIC: Preamplifier

- **Double feedback current conveyor:**
 - Fix input voltage and impedance.
 - Selectable gains at output mirror.
- **Transimpedance amplifier:**
 - Current to voltage conversion.
 - Control conveyor output voltage.

- Bandwidth 250 MHz.
- Input impedance 50 Ω.
- Input voltage control range 700 mV.
- Input dynamic range 4 µA-4 mA.
- Power consumption below 2 mW.
PACIFIC: Shaper

- Double pole-zero cancellation scheme for fast shaping (10 ns).
- Closed-loop OTA circuit with two configurable passive nets:
 - First pole-zero net cancels slow component (SiPM capacitance and quenching resistor).
 - Second pole-zero net cancels fast component (trace parasitics and input impedance).
- A DC feedback loop controls the quiescent output voltage (critical for the subsequent integration).
PACIFIC: Integrator

- Classic closed-loop gated integrator architecture based on a Miller OTA with increased slew rate.
- Dead times avoided by using two interleaved units with independent offset trimming circuits.
- Synchronization with the digitizer is mandatory.

Dual Gated Integrator
PACIFIC: Digitizer

- Dual passive track and hold merges the two subchannels.

- Flash ADC using three comparator with:
 - Dynamic range: 20-850 mV.
 - Hysteresis: 10 mV.

- Three independent references, configurable per channel, with:
 - Dynamic range: 0-750 mV.
 - Resolution: 8 bits.

- The output of two channels is fed to a serializer that:
 - encodes the three comparator outputs into 2 bits.
 - streams out both values at 160 MHz.
PACIFICr0 and PACIFICr1

- PACIFICr0:
 - May 2013.
 - IBM 130 nm.
 - Fix gain current conveyor.
 - Design migration from AMS 350 nm BiCMOS.

- PACIFICr1:
 - November 2013.
 - IBM 130 nm.
 - One analog FE plus test blocks.
 - Analog external bias.
 - Independent GI output.
Good Preamplifier linearity over full designed dynamic range.
PACIFICr2 and PACIFICr3

- PACIFICr2:
 - August 2014.
 - IBM 130 nm.
 - Eight full FE channels.
 - Internal biasing and I2C digital configuration.

- PACIFICr3:
 - July 2015.
 - TSMC 130 nm.
 - First full size prototype.
 - Separate bias left/right.
PACIFICr3: Power and Bias

- Power consumption **10.4 mW/ch**, within specifications.
- Bandgap and derived reference voltages slightly low.
- All reference voltage use the same DAC design (6 bit) except the threshold of the first comparator (7 bit).
- Reasonably linear response in all measured instances.
PACIFICr3: Input Voltage

- Derived from a resistor ladder with 16 possible values.
- Range (700 mV) and step (50 mV) as simulated.
Internal charge injection triggered externally.
Output sorted by trigger to clock phase difference.
Response limited by integrator slew rate.
PACIFICr3: Comparator Mismatch

- Comparator offset voltage obtained using threshold scan.
- Calculated difference to the first comparator offset voltage.
- All channels in two chips evaluated, 256 instances in total.
- Measured 20% increase w.r.t. Monte Carlo simulations.

![Histograms of PACIFICr3 Comparators Relative Thresholds](image1)

![Histograms of PACIFICr3 Simulation Comparators Relative Thresholds](image2)
PACIFICr3: Synchronous Light Input

- Picosecond diode laser synchronously pulsed on SiPM.
- Distinct photoelectron structures are noticeable.
- Processing channel architecture considered validated.

![PACIFICr3 Threshold Scan](image)

μ₁ = 116.5, σ₁ = 1.05

μ₂ = 101.5, σ₂ = 1.35

μ₃ = 83.8, σ₃ = 2.10

μ₄ = 59.6, σ₄ = 3.16

μ₅ = 36.3, σ₅ = 2.95

μ₆ = 20.2, σ₆ = 3.95

Gain = 19.3
S/N = 7.9
PACIFIC is a SiPM readout ASIC with:
- Current input for direct anode connection.
- Fast PZ cancellation shaping for tail suppression.
- Gated integrator damps statistical fluctuations.
- Non-linear configurable 2 bit digital output.

Channel architecture has been fully validated.

New prototype PACIFICr4 is in production with:
- Increased slew rate in integrator amplifier.
- Expanded comparator transistor size a factor three, in addition threshold DACs per channel included.
- Custom digital output pads with higher driving power.

Production readiness review planned for Q2 2017.
Thanks a lot for your attention!