Figures:
- Fig 3 (top) is missing
 - Figure 3 (top) is meant to be the exploded view, while the (bottom) is the cross-sectional view.
- Fig 5 (top) is a bit out of focus
 - Figure 5 (top) is unfortunately the best photo we have of the DUT: the writing on the bottom is out of focus so that the relevant part (SSAs and wire-bonds) can be as in focus as possible.

Text:
- Implemented Type A comments. Thank you!

Comments (Type B):
- We don’t understand the meaning of the sentence at line 167: “The strips are defined by the pitch and their length by the dimensions of the sensor”
 - We’ve removed this confusing an unhelpful sentence.
- At lines 173-174 we read: “As the results presented below have no dependence on these parameters, they can be safely ignored”. The only problem is that the collected charge in the DUT depends, in principle, also on the angle. The fact that the observed Landau and Ncl >1/Ncl values are larger than the corresponding simulated values could be a hint of a different from zero angle.
 - This is an interesting point: we’ve removed the sentence, and when describing beta we note that deviation from 0 (which we can’t measure) would serve to increase the effectively increase the sensor thickness. (we won’t mention this in the paper, but it’s notable that our mu in the model we fit is a little higher than expected, though it’s impossible to tel if that’s because of approximations in the model or actual thickness).
- It takes some time to understand why the trigger delay Working Point (Fig. 9, Fig 10) is chosen around 11 ns and not around 14 ns. Fig 9 is quoted and commented at lines 191-196, Fig 10 is introduced and commented at lines 196-198. At lines 199-200 it is remarked that “the timing was fixed at the indicated working point, although it has slightly sub optimal efficiency” (and the readers wonders why). Only at line 201-202 we are informed that the choice was based on “online measurements using the Monicelli framework during data taking […] which uses a less precise geometric alignment of the DUT”. Maybe this info should be given before…
 - This is true, but it’s difficult to talk about a working point for a measurement not yet described. We’ll leave this as is, despite the slightly long description.
- Also the last sentence of the paragraph is not very clear (even if one can understand what it would like to state): “inconsistently rejecting tracks just outside the actual sensor boundary […] when computing the efficiency”. Why such procedure would be inconsistent, if a track was really outside the actual sensor boundary? The problem is probably that –due to non perfect online alignment- tracks that should be considered are instead discarded because they appear to be outside the DUT (at least this is what we have grasped from the text).
 - We’ve changed the sentence to: This online calculation, which uses a less precise geometric alignment of the DUT, inconsistently considered tracks
just outside the actual sensor boundary when computing the efficiency.
Which is a better description of the issue.