IT-μDTC firmware development
Simulation and testing of RD53A Chip Readout with FC7

Tamás Balázs, Viktor Veszprémi
MTA Wigner RCP

Nov 30, 2018

Supported by OTKA K124850
IT-µDTC Firmware Development Update

- Running development tasks in order
 → Porting DIO5 → **Ready**
 → Porting TLU → **Ready**
 → i2c multi-master problem with CERN, KSU and DIO5 FMCs → **need to be solved**...
 → Porting TTC Decoder → **To do**...
 → Porting AMC13 → **To do**...

I2C multi-master problem

- Overview and possible solutions
 → CERN and KSU FMCs need the same state machines
 → DIO5 has different state machine, it feeds the i2c slave with writing a FIFO through IPBus registers
 → we can try to use the i2c master in system core which has IPBus integration
 → or we can use i2c master core from Opencores which supports multi-master operations

Testing aurora_rx with KSU FMC

- Overview and summary
 → 1 lane aurora_rx tested in L12 FMC on J7 connector
 → aurora_rx tested by Russell in L12 FMC on J2 connector
IT-μDTC Firmware Development Update

Modifications on CERN FMC

- Past and current changes
 - C18 and C19 have already bypassed to have DC coupled clock
 - both in version 1 and 2 boards C34 and D35 pulled to GND
 - in L8 FMC this GND point is pulled up to 3.3V!
 - vias are located under the FMC connector
 - easiest solution is to remove electrical contacts from the FMC connector in CERN FMC
 - all functionalities remain the same

Testing aurora_rx with CERN FMC

- Overview and current state of testing
 - gtx reference clock constraint modified according to L8 FMC
 - 1 lane aurora_rx reconfigured to X0Y7 gtx
 - in case of L8 FMC gtx differential signal polarity is reversed
 - so far gtx locked to PLL but aurora_rx lane and channel up did not go high