Contents

1 Used modules and libraries
2 Architecture
2.1 Solutiondescription e e
22 Mainparts e e e e e e e e e e
22.1 Interface,
222 COTE . . . o o s,
223 Checkers e e
224 UtS . . . o e s
3 Code structure
4 Map-reduce
5 Environment
6 Commands
6.1 Possiblecommands e e e
6.2 Possibleoptions
6.3 Using TOTCSI e
6.4 Generated SCTIPtS L e e e
7 Directories structure
7.1 Workspace directory e e e
7.2 Outputdirectory e e e e e e

8 Persistence

10

10
10
11
11
12

13
13
15

16

1. Used modules and libraries

Technology | Description

Jinja2

It is a modern and designer-friendly templating language for Python, which
we extensively used for the templating of the CMS SoftWare (CMSSW) con-
figurations. It rapidly fills out the templates and gives the option of special
functions to be fired upon obtaining a specified token in template. Much faster
than the Python string. Template class.

tokenize

Module designed for obtaining structures of tokens out of some readable ob-
jects. Used by us to read the CMSSW templates and remove unnecessary
comments before the Jinja2 is to be used.

cStringlO

Used together with tokenize for special access to string variables. It is very
fast thank to being rewritten to C (hence the "c" letter at the beginning).

optparse

Module providing an easier way of managing the command-line of applica-
tion

pyTotem

Python library with overloaded Python system functions and utility methods
for TOTal Elastic and diffractive cross section Measurement (TOTEM) pro-
gramming environment

2. Architecture

2.1. Solution description

This system is to replace the three currently used tools and so it has to work better and be as easy
in usage as it’s possible.

The tool has modular construction - so that it will be easier to maintain and extend it in future (as
well as change some of the parts easily if it’s needed). It has few ways of configuring:

e the main configuration file for the program (in which the configuration_logic.py module is

to be imported and used). User may specify a number of options here:

o

(0]

whether he wants to run the simulation or the data reconstruction,
the output location for all operations,

computing cluster parameters,

path to CMSSW location,

workspace directory specification,

specialized simulation options,

* number of events to generate per job

* number of jobs to be used
specialized reconstruction options,

* the way to split the configurations in regards of number of events, amount of files
to have as an input for reduce phase

* paths to input data

* files to exclude from input

o Parallel templates regarding the parallel phases of the reconstruction or simulation. A per-
son can choose the analyzer’s he wants to use, the loggers and other modules specified by
CMSSW framework.

e Sequential templates, in which user configures the final output of the chain of operations.
A number of CMSSW modules can be chosen here (same as for parallel phase template) to
get preferred output.

As output the user may have:

o .root file generated out of multiple .root files

o Ntuple file as an output of merging multiple ntuples (rarely chosen as it can be easily
done through ROOT environment)

o Ntuple generated through the use of TotemNTuplizer (which as input takes multiple
root files)

o one or more .root files with histograms and plots generated by the use of some of
arbitrary analyzer modules (like HitsDistribution module), which as input take .root
files

e simple command-line options which can be used during the launch of TOTEM Configuration
Splitter Improved (TOTCSI).

2.2. Main parts

The system consists of four main parts, presented on figure 1. Most of the parts can be replaced by
new ones if needed, however be careful with that for the modules of Core part extensively use the
TOTCSI configuration files.

Interface Core Checkers
Template
Checker
B 4
/ Splitting Input
I Module) Checker
User
Interface [——U
_\ \ Checker
A I~

Submission
Module

TOTCSI
Launcher

Output
Checker

<

Utils

i File Manager

Figure 1: TOTCSI architecture overview.

Batch Service

CASTOR

2.2.1. Interface

The interface block is responsible for communication with the user and interpreting his commands.
Additionally, it setups the environment for the rest of the system during its start-up and keeps the
tool output messages human-readable. Most of its functions are realized by following two parts.

e The TOTCSI Launcher — its main purpose is to discover which version of Python is currently
being used (as users could choose different ones at the CERN terminals). Afterwards, it
calls the necessary set of shell commands in order to prepare the environment for following
actions. This process is essential for two reasons — it ensures that the active interpreter
supports all utilized language features and enables the possibility to correctly import and run
the CMSSW-connected modules (which is vital in the configuration checking procedure). In
the end, it starts the central UI system part. The Python module which takes care of those
actions is named totcsi_launcher.py.

e The User Interface — it parses the command line and interprets the orders provided by
the user, then decides which of the other modules should be called later. Also, it handles

providing the help information when needed and printing messages describing the errors
and exceptions, if any occur. Related module is named main.py.

2.2.2. Core

The application core elements manage the most important of the system tasks— splitting the
CMSSW configuration templates and submitting jobs to the LXBATCH computing cluster.

e Splitting Module takes care of splitting of the templates given by user and filling them with
needed additional information and saving them to workspace directories as valid CMSSW
configurations. Besides that it produces the small configurations for local test-runs. Python
module’s name is splitter.py.

e Submission Module is used to produce the shell scripts for submission, resubmission and
local tests of the CMSSW configurations. Functions needed for those tasks are programmed
in module submitter.py.

2.2.3. Checkers

Checkers block consists of modules which are built for checking of the correctness of given con-
figurations and templates, produced files and jobs’ outputs. Some of the functions of the modules
are called automatically during some of the activities done by TOTCSI (e.g. looking through given
configurations), others (like checking of the outputs) can be called by specified command.

TOTCSI
Configuration
File

CASTOR /
EOS / AFS

Reconstruction
Template

Simulation
Template

Configuration
and Template
Checkers

Output
Checker

User Interface

Figure 2: Architecture of the checking.

e Template Checker is used to produce smaller, computationally undemanding CMSSW con-
figurations and shell scripts for running them locally by user. Such action let’s user know if
the configuration produces expected files. All produced files and configurations are stored in
workspace under folders named test_directory. Both splitter.py and submitter.py modules
are used in creation of those testing files.

e Configuration Checker wraps the configuration given by user and looks through paths speci-
fied by user, calls the necessary functions and produces structures needed by other modules.
The file containing function for this part of system is configuration_checker.py.

e Output Checker checks if the output data exists and is not corrupted, if there is anything
wrong, it creates lists with configurations that should be rerun which is later used dur-
ing generation of resubmission scripts. All functions for this module are contained in out-
put_checker.py.

2.2.4. Utils

This block consists of a number of useful modules, which provide often used functions for data
access, parsing, naming and others.

e The main part of this block is File Manager, which relates to functions needed for file and
directory creation, removal and access on Andrew File System (AFS), CERN Advanced
STORage manager (CASTOR) and Exploration Of Storage (EOS). It’s provided through the
files_manager.py module.

e The others.py contains many functions that did not fit in other modules but are very needed
and constantly used. It has procedures for parsing of the input data given by user in TOTCSI
configuration.

e All messages (in form of Python strings) and functions regarding informing the user of
what’s done by TOTCSI reside in messages.py module.

e Exceptions which can be thrown inside TOTCSI are defined in exception.py module. All
the exceptions thrown are caught in main.py module.

e Very important module, which is partly the configuration of TOTCSI (for example it con-
tains the naming convention of the directories and files) is named properties.py. All of the
Core modules and interface modules make use of it, as it provides important definitions and
persists the name of the TOTCSI configuration which is used as the sub-directory inside the
main workspace directory. It is built of few important “parts”.

o Files and directories (naming and paths) for TOTCSI
file storing all paths from CASTOR
CASTOR_FILE = "CASTOR_paths.txt"
name of file containing paths to input data,
it’s later used to retrieve the paths for splitting
INPUT_PATHS_FILE = "input_files"
same as INPUT_PATHS FILE, but for files
that should be excluded from input_data
EXCLUDED_PATHS_FILE = "excluded_files"
main module file placement
MAIN_MODULE_FILE = os.path.join("totcsi", "main.py")
where to start looking for data in CASTOR
CASTOR_BASE_DIRECTORY = "/castor/cern.ch/totem/LHCRawData"
main part of the name of simulation directory
SIMULATION_DIRECTORY = "sim"
main part of the name of reconstruction directory
RECONSTRUCTION_DIRECTORY = "run"
main name of directory used to store files used for parallel part
PARALLEL_DIRECTORY = "parallel"
name of directory used to store files used for sequential part
SEQUENTIAL_DIRECTORY = "sequential"
RENDER_DIRECTORY = "submission_files"
LOG_DIRECTORY = "LOG"
OUTPUT_TOTCSI_DIRECTORY = "TOTCSI"
MAIN_LOG_NAME = "totcsi_main.log"
EXPECTED_OUTPUT_NAME = "expected_output"
EXPECTED_OUTPUT_TYPE = "txt"
MISSING_OUTPUT_NAME = "missing_output"
CORRUPTED_OUTPUT_NAME = "corrupted_output"
RESUBMISSION_CONFIGURATIONS_NAME = "configs_for_resubmission"
TEST_DIRECTORY = "test_directory"

o Shell commands
command for sourcing default variables for CMSSW

SOURCE_CMS_DEFAULTS_BASH = "source /afs/cern.ch/cms/cmsset_default.sh"
command for preparing CMSSW runtime
SCRAM_CMS_RUNTIME_BASH = "eval ‘scram runtime -sh"

o Qutput naming
FN_DEFAULT_DIRECTORY = "."
FN_DEFAULT_NAME = "totcsi"
FN_DEFAULT_NUMBER = 0
FN_NTUPLE = "ntuple"
FN_HISTOGRAM = "hist"
FN_CONFIGURATION = "config"

o General properties
name of the configuration used
CONFIGURATION_NAME = None

force = False

TOTCSI_VERSION = "TOTCSI 2.0" # TOTCSI current version
INTERPRETER = "python"

SIMULATION_TASK = "Simulation"

RECONSTRUCTION_TASK = "Reconstruction"

LOAD_FROM_FILE_MARKING = "read_ list_from_ file_ load"
LOAD_FROM_RUN_NUMBERS_MARKING = "paths_from_run_numbers_load"

PER_FILE_FOR_TEST = 10

o List of TOTCSI commands
READ_CASTOR_CMD = frozenset (["readCastor", "rc"])

FIND_PATHS_CMD = frozenset (["findPaths", "fp"])
GENERATE_SUBMISSION_CMD = frozenset (["generateSubmission", "gs"])
GENERATE_RESUBMISSION_CMD = frozenset (["generateResubmission", "gr"])
GENERATE_LOCAL_TESTS_CMD = frozenset (["generateTests", "gt"])
CHECK_PARALLEL1_CMD = frozenset (["checkParallell", "cpl"])
CHECK_PARALLEL2_CMD = frozenset (["checkParallel2", "cp2"])
CHECK_PARALLEL3_CMD = frozenset (["checkParallel3", "cp3"])

(1

CHECK_SEQUENTIAL_CMD = frozenset

CHECK_CMD = CHECK_PARALLEL1_CMD | CHECK_PARALLEL2_CMD |
CHECK_PARALLEL3_CMD | CHECK_SEQUENTIAL_CMD

TOTCSI_COMMANDS = READ_CASTOR_CMD | FIND_PATHS_CMD |
GENERATE_SUBMISSION_CMD | GENERATE_RESUBMISSION_CMD |
GENERATE_LOCAL_TESTS_CMD | CHECK_CMD

)

["checkSequential", "cs"

o Jinja2-related properties (template keywords and filter names)
Jinja2 filter names

RANDOM_FILTER = "rnd"

NAME_FILTER = "name"

NTUPLE_FILTER = "ntuple_name"
HISTOGRAM_FILTER = "histogram_name"
configuration template keywords
CTK_SEED = "seed"

CTK_EVENTS_NO = "number_of_ events"
CTK_EVENTS_SKIP = "skipped_events"
CTK_OUTPUT = "output"

CTK_INPUT = "input"

3. Code structure

One could learn the details of application shape by browsing through API included as an attach-
ment. Designed as an interactive website (activated by opening the index.html file in code doc-
umentation directory) it provides an easy way of obtaining extensive knowledge about solutions
used in the system. To generate the documentation developer can use the Sphinx tool (it is already
configured in developer versions of TOTCSI).

4. Map-reduce

The tool uses the Map-Reduce approach (used by the previous scripts as well), which is excellent
when used in environments capable of parallelizing the jobs (such as batch services).

User submits the
scripts to batch
service, which then

returns multiple .root

files.

TOTCSI uses
configuration file
and templates to

Config file
and run

The resulting .root
files are merged into
one .root file by
submitting reduce
script to computer
cluster.

script

generate multiple
job configuration
files and run scripts.

Config file
and run

script

Config file
and run

script

Config file
and run

script

Figure 3: Map-reduce simulation example.

Data can be mapped in more than one way:

e multiple raw-data files may be mapped into many .root files (one job per one file)

o additionally raw-data files can be used to produce ntuples or other .root files with use
of CMSSW analyzers

e a number of raw-data files might be put in one run and as an outcome we get one .root file -

in this case the reduce operation is a part of mapping.

Reduce operation can vary:

e many .root files can be reduced to one big .root in one run

e multiple Ntuples may be merged into single Ntuple using one job

e a number of .root files might produce Ntuple with the use of TotemNTuplizer CMSSW

module

10

5. Environment

Currently (checked on 18.01.2013) there is an issue with the environment in which TOTCSI is
deployed. The Python paths change if user runs commands specified by other tools (sourcing the
CMSSW framework causes the environmental variables to change). If the tools is called by
python totcsi
without user sourcing the CMSSW configurations before, the Python used is 2.4, which does not
have necessary modules. On the other hand the same command will work fine after the sourcing,
as the Python called will be version 2.6.4 . The command
python26 totcsi
Will give correct results when used without sourcing. After changing the environment variables
this Python is stripped out of all modules, so is almost unusable.
Because of those problems we decided to do two things:

e call Python through bash launching script, which will first check if the environment was
changed or not and then start TOTCSI with the right command

e in the called module (totcsi_launcher.py) set up the environment variables (e.g. paths to
needed modules) and run the necessary bash commands.

6. Commands

User can call number of commands and options while using the TOTCSI. Apart from the full names
of commands we are giving users the shorter versions for easier usage. There are few options which
can be specified as well. Additionally, few of the system activities are activated by running the
appropriate bash script file.

6.1. Possible commands

e readCastor (rc) — checks the current status of CASTOR and saves information about it into
special cache file. It is accomplished by recursive search through all directories containing
TOTEM experiment data and listing their contents.

o findPaths (fp) — searches through all known files containing raw data (obtained by read-
Castor command) and prepares the input file list for the splitting procedure. Whether the file
should be included or not is decided on the basis of provided criteria (for example: numbers
of runs that should be reconstructed).

o generateTests (gt) — creates a set of bash script files allowing to check the quality of pro-
vided configuration. The test computation will behave the same way the real one does, but
the number of processed events would be greatly reduced (in order to quicken the calcula-
tions), the output would be saved in user directory on AFS and the job would not be send to
cluster, but executed locally instead.

e generateSubmission (gs) — creates a set of bash files and CMSSW configurations needed
to submit the user-requested jobs to LXBATCH cluster. The process is conducted in two

11

phases. The first one is called splitting and renders the Python modules that specify the
shape of the planned computing process (by filling the configuration template). The second
one prepares a hierarchy of scripts, that would be later used to submit jobs (all of them or
given part, depending on chosen script).

o checkParallell (cpl) — verifies whether all the predicted output files from parallel phase
are present. In case of discovering a missing one it informs the user and saves the data needed
for possible resubmission.

e checkParallel2, checkParallel3 (cp2, cp3) — fulfills the same task that checkParallell com-
mand, but instead of the first parallel phase the second or third one output is checked.

e checkSequential (cs) — fulfills the same task that checkParallel1-3 command, but for se-
quential phase.

e generateResubmission (gr) — creates resubmission scripts similar to those created by gen-
erateSubmission script, which can be used by user to resubmit jobs to computer cluster. It
produces only the highest and mid-level scripts in hierarchy of scripts (by reusing the con-
figurations and scripts created by generateSubmission).

6.2. Possible options

e -h/ ——help — shows the possible commands with explanations

e -c / ——config= — user specifies the path to TOTCSI configuration that he wants to use, it
has to be used during all commands

e -q/ ——quiet — turns off the information of current state of work in TOTCSI
e -d/ —-debug — turns on the full stack trace of errors which are caught

o -f/——force — files in workspace will be overwritten if it’s needed by command (for example
the configuration files or shell scripts)

6.3. Using TOTCSI

TOTCSI can be used in two ways:

e as a service, as it can be deployed in one directory accessible by users and every user-specified
information will be saved in the command-calling person’s home folder,

e when downloaded, a user can have his own copy of TOTCSI set-up in directory of his own
choosing. It can be downloaded from SVN repository.

o project trunk

svn co svnt+ssh://svn.cern.ch/reps/totem/trunk/offline/cmssw/tools/config_splitter

o tag for version TOTCSI 1.0
svn co svn+ssh://svn.cern.ch/reps/totem/tags/TOTCSI/TOTCSI_1_0 config_splitter

12

o tag for version TOTCSI 1.1
svn co svn+ssh://svn.cern.ch/reps/totem/tags/TOTCSI/TOTCSI_1_1 config_splitter

o tag for version TOTCSI 2.0
svn co svn+ssh://svn.cern.ch/reps/totem/tags/TOTCSI/TOTCSI_2_0 config_splitter

The typical TOTCSI usage is shown on the activity diagram (figure 4).

.—}ﬁHRefresh the CASTOR state information: readCastor P

i

In case of multiple parallel
phases the same pattern
reocurrs and the checkParallell

Prepare the input file list findPaths command is replaced by
checkParallelN, where N is the
phase number

O—Check the provided configurations first generateTests Run parallel phase test‘scripﬁ)—\
Run sequential phase test script:

Create submission files

i

i

Error while rufning parallel test

A Error whileiming sequential test §®<
[generateSubmission]

Submit parallel phase jobs,

Run parallel phase submission script
from workspace directory

o
Wait for jobs to finish

%Check results checkParallell Tﬁles missing{generateResubmission}

Do not check results

Success

Submit sequential phase jobs

Run sequential phase submission script
from workspace directory

L
Wait for jobs to finish

Q—Check results checkSequential Files missing{generateResubmission

Do not check results

dl
- Success
Finished4>©

Figure 4: TOTCSI 2.0 activity diagram.

6.4. Generated scripts

o submit_ RUNNUMBER_PHASE.sh — sends all the jobs connected with given run (or given
simulation) to LXBATCH cluster. Also takes care of saving the process logs and copying the
results into desired directories (if necessary).

13

o main_submit_ PHASE.sh — submits every job belonging to given phase to computing
cluster. The task is accomplished by running the sequence of lower level scripts (sub-
mit_RUNNUMBER_PHASE.sh).

o resubmit_ RUNNUMBER_PHASE.sh — works similarly to sub-
mit_RUNNUMBER_PHASE.sh, although it only submits the jobs which output files are
missing or corrupted (this knowledge is gained by checking the configs_for_resubmission
files produced by checkPHASE command).

o main_resubmit PHASE.sh — it is wused as main_submit PHASE.sh for resub-
mit_RUNNUMBER_PHASE.sh scripts.

7. Directories structure

TOTCSI defined its output and workspace directory trees, so that it can easily check the correctness
of files, copy them and delete if needed. The naming conventions can be changed in properties.py
module.

7.1. Workspace directory

Workspace main directory is specified by user in TOTCSI configuration, it is used by the tool to
save all generated files (scripts, logs, state after calls). The overall structure of workspace can be
seen on figure 5.

In the workspace TOTCSI creates sub-directories, which name is taken from the naming of the
configuration provided by user (i.e. if user provides the configuration my_reconstruction.py the
extracted name for sub-directory will be my_reconstruction). When the command readCastor is
used, the tool generates file named CASTOR_paths.txt, which consists of all found path to .vinea
files from /castor/cern.ch/totem/LHCRawData directory tree (except the backups). As there is only
one such file per workspace, it can be reused by multiple different configurations and should be
updated only, when there are new files in the LHCRawData folder.

Structure of configuration sub-directory:

o main_submit_PHASE.sh and main_resubmit_PHASE.sh — described in Generated scripts
section

o input_files and excluded_files — two files which are produced from the con-
fig.reconstruction.input_data and config.reconstruction.files_to_exclude parameters of con-
figuration. They are generated when the findPaths command is called, or automatically when
the user provided paths directly to the .vmea files; function taking main part in creation
of those files can be found in others.py module and is named parse_data_list(data_list,
where_to_save)

e mainlog.log — main log for TOTCSI operations

o runNUMBER/simNUMBER sub-directories — they resemble the division of tasks for
TOTCSI; each NUMBER means an autonomous instance of submission, resubmission and
test scripts and files; every of those folders has similar structure

14

Workspace directory

main_submit_
parallell.sh

Project/configuration directory
(named after configuration)

Project/configuration directory
(named after configuration)

main_submit_
parallel2.sh

)]

main_resubmit input_files excluded_files
main_submit_ main_submit_ files for phases
parallel3.sh sequential.sh
runNUMBER directory]
runNUMBER directory mainlog.log - . —
Project/configuration directory
o parallell (named after configuration)
- - - expected_outp
submission_files ut_parallelL.txt
submit_run N
NUMBER_ .py configs
parallell.sh corrupted_output simMNUMBER directory
simNUMBER directory
resubmit_run '?h .
NUMBER submission Ny
i scripts missing_output
parallel1.sh 2 Sy Project/configuration directory

(named after configuration)

—_—

Same
test_directory runN
parallel2 l [parallel3 l (similar to run/sim dir

directories)

-
o
@
n

submit_run
NUMBER_
sequential.sh

resubmit_run

NUMBER_
sequential.sh

sequential test_directory
(similar to run/sim

directories)

expected_outp

submission_files ut_sequential.txt

|| .py configs

.sh
submission
scripts

Project/configuration directory
(named after configuration)

corrupted_output

missing_output

Figure 5: Workspace directory structure.

o PHASE directory — can be either parallell, parallel2, parallel3 or sequential and

contains files associated with the specified phase (logs, scripts etc.)

* expected_output_PHASE.txt — file containing information about the expected out-

put of running the splitted jobs on this computer cluster, more information in Per-
sistence section

submit_runNUMBER/simNUMBER _PHASE.sh and resub-
mit_runNUMBER/simNUMBER_PHASE.sh — described in Generated scripts
section

missing_output and corrupted_output — files produced by checkPHASE; any re-
sult of the job that is in expected list but is not in the output directory will be
added to missing_output (and if the result is found to be invalid it’s added to cor-
rupted_output); the file is used as informative document for user

* LOGS directory — contains logs of the submitted jobs, which are copied to the

output directory as well

submission_directory — contains both the CMSSW configurations and submission
scripts for jobs (the lowest-level bash scripts in hierarchy); files contained in this

15

folder are produced through calling the generateSubmission command

o test_directory — produced by generatesTests command, it has similar structure as
the runNUMBER/simNUMBER directories, however it contains special shell script
for local test-run of small CMSSW configuration; the output of this run will reside in
test_directory as well (as it’s relatively light)

7.2. Output directory

The directory structure (see figure 6) for the output of all parallel and sequential phases. All rel-
evant files needed by submission and produced by jobs will be stored there. The paths to those
directories have to be specified by the user in the TOTCSI configuration file and can point to the
AFS, CASTOR or EOS.

OUTPUT DIRECTORY FOR MAP/REDUCE

TOTCSI CONFIGS LOG FOLDER

map CMSSW map/reduce
template CMSswW logs
w configurations

reduce
CMSsSW

template map/reduce
w shell scripts

TOTCSI
configuration
file

e

main log

]

output .root files

Figure 6: Output directory structure.

Explanation of contents:

e output .root files are the main and most important part of the output folder. They are the
results of the operations carried out by the computing cluster

o LOG folder

o main log has information about the CMSSW and TOTCSI version

o logs of the standard and error output of the jobs
o CONFIGS folder

o scripts used for submission

o CMSSW configuration generated during splitting
e TOTCSI folder

o TOTCSI configuration file (given at the start of the whole workflow by user)
o the used CMSSW template created by user and passed to TOTCSI in configuration

16

8. Persistence

A number of TOTCSI features are impossible to implement without the ability to save some in-
formation about the system and store them between the commands execution. This requirement is
fulfilled by using a set of special files, serving as the simple, but efficient and flexible persistence
mechanism.

A good example of such use of persistence files is storing of the knowledge about the current CAS-
TOR state. The process of traversing recursively through whole directory tree belonging to TOTEM
experiment consumes huge amount of time and having to repeat it often would cause the usage of
the software tiresome for users. Therefore, the obtained results are written into CASTOR_paths. txt
and treated as up-to-date, until another readCastor command is given.

Similar reasons are the case of input_files and excluded_files existence. Selecting the proper path
subset from data stored in CASTOR_paths.txt is a time consuming activity and one should avoid
doing it unnecessarily. Moreover the input_data and excluded_files properties from TOTCSI con-
figuration can be specified in many different ways, which upon calling of the findPaths command
will end up in unified state (list of paths) in those two files.

On the other hand, configs_for_resubmission is used, because the need arose to connect the check
commands with generateResubmission. It contains the list of the CMSSW configurations that
failed to produce the declared output. And the information about the shape of the proper output
itself is stored in the expected_output file.

Additionally, after performing the checking procedure, the files that turned out to be invalid or not
present are mentioned in missing_output and corrupted_output files, that could be later utilized by
the user.

Glossary

-root file format used by the ROOT software.

.vmea raw TOTEM experiment data file format.

AFS Andrew File System.

Andrew File System a distributed networked file system used by LXPLUS cluster machines, pre-
senting a homogeneous, location-transparent file name space to all the client workstations.

batch queue a data structure maintained by job scheduler, containing jobs to run; LXBATCH of-
fers different queues with different priorities, depending on the job CPU time requirements.

CASTOR CERN Advanced STORage manager.
CERN the European Organization for Nuclear Research.

CERN Advanced STORage manager a hierarchical storage management system developed at
CERN for physics data files.

CMS Compact Muon Solenoid.

17

CMS SoftWare the overall collection of software built around a Framework, an Event Data
Model, and Services needed by the simulation, calibration and alignment, and reconstruction
modules that process event data so that physicists can perform analysis.

CMSSW CMS SoftWare.

CMSSW configuration a Python module file (.py) serving as a main input for CMSSW; it has to
create a process object, describing the demanded computation chain and its properties.

EOS Exploration Of Storage.

European Organization for Nuclear Research an international research organization based in
Geneva (Switzerland), mostly focused on high-energy particle physics.

Exploration Of Storage CERN project providing a fast and reliable xroot-managed disk pool for
analysis-style data access.

HPC High Performance Computing.

IBM Platform LSF a powerful workload management platform for demanding, distributed HPC
environments.

Jinja2 a modern and designer friendly templating language for Python, modelled after Django’s
templates.

Large Hadron Collider the world’s largest and highest-energy particle accelerator, operating in
in a circular tunnel 100 metres beneath the Swiss/French border at Geneva.

LHC Large Hadron Collider.
LSF Load Sharing Facility.

LXBATCH the CERN batch computing service consisting of around 35,000 CPU cores running
Platform LSF®, providing computing power for tasks such as physics event reconstruction,
data analysis and physics simulations.

LXPLUS a cluster consisting of public machines, providing the interactive logon service to Linux
for all CERN users.

Monte-Carlo simulation a simulation using the Monte-Carlo random number generator.

NTuple easy to access data storage format of basic data types, allowing variables manipulation,
plotting and fitting.

offline software the software used to process static data (both from simulations and detectors).

PLUS Public Login User Service.

18

PyTOTEM a python package developed for needs of calculation of integrated luminosity for data
collected by TOTEM, containing several useful, general-purpose modules.

ROOT a system developed at CERN, providing a set of object-oriented frameworks with all the
functionality needed to handle and analyze large amounts of data in a very efficient way.

Scientific Linux a Linux release put together by Fermilab and CERN, its primary purpose is to
reduce duplicated effort of the labs, and to have a common install base for the various exper-
imenters.

SL Scientific Linux.

splitting the process of creating CMSSW configurations for multiple jobs and their submission
scripts from single templates.

submission script a bash script file (.sh) serving as a main LXBATCH input, describing sequence
of steps for a single LSF job.

TOTal Elastic and diffractive cross section Measurement an experiment dedicated to the pre-
cise measurement of the proton-proton interaction cross section, as well as to the in-depth
study of the proton structure.

TOTCSI TOTEM Configuration Splitter Improved.

TOTCSI configuration a Python module file (.py) serving as a main input for TOTCSI tool, de-
scribing desired splitting course and its details.

TOTEM TOTal Elastic and diffractive cross section Measurement.

XRootD an architecture, a communication protocol, and a set of plugins and tools aimed at giving
high performance, scalable fault tolerant access to data repositories of many kinds, especially
file-based ones.

	Used modules and libraries
	Architecture
	Solution description
	Main parts
	Interface
	Core
	Checkers
	Utils

	Code structure
	Map-reduce
	Environment
	Commands
	Possible commands
	Possible options
	Using TOTCSI
	Generated scripts

	Directories structure
	Workspace directory
	Output directory

	Persistence

